12
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Influence of Malignant Cell Clonogenic Capacities and Position Along the Maturation Pathway on Their Susceptibility to Lymphokine-Activated Killer Cell Cytotoxicity

, , , , , & show all
Pages 343-353 | Accepted 16 Mar 1997, Published online: 01 Jul 2009

References

  • Rayner A. A., Grimm E. A., Lotze M. T., Wilson D. J., Rosenberg S. A. Lymphokine-activated killer (LAK) cell phenomenon. IV. Lysis by LAK cell clones of fresh human tumor cells from autologous and multiple all6geneic tumors. J Natl Cancer Inst 1985; 75: 67–75
  • Itoh K., Tilden A. B., Balch C. M. Lysis of human solid tumor cells by lymphokine-activated natural killer cells. J Immunol 1986; 136: 3910–3915
  • Dawson M. M., Johnston D., Taylor G. M., Moore M. Lymphokine activated killing of fresh human leukemias. Leuk Res 1986; 10: 683–686
  • Fierro M. T., Liao X., Lusso P., Bonferroni M., Marera L., Cesano A., Lista P., Arione R., Forni G., Foa R. In vitro and in vivo susceptibility of human leukemic cells to lymphokine activated killer activity. Leukemia 1988; 2: 50–54
  • Trentin L., Pizzolo G., Feruglio C., Zambello R., Masciarelli M., Bulian P., Agostini C., Vinante F., Zanotti R., Semenzato G. Functional analysis of cytotoxic T-cells in patients with acute nonlymphoblastic leukemia in complete remission. Cancer 1989; 64: 667–672
  • Archimbaud E., Bailly M., Dore J. F. Inducibility of lymphokine activated killer (LAK) cells in patients with acute myelogenous leukaemia in complete remission and its clinical relevance. Br J Haematol 1991; 77: 328–334
  • Henney C. S., Kuribayashi K., Kern D. E., Gillis S. Interleukin-2 augments natural killer activity. Nature 1981; 291: 335–338
  • Grimm E. A., Mazumder A., Zhang H. Z., Rosenberg S. A. Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin-2-activated autologous human peripheral blood lymphocytes. J Exp Med 1982; 160: 1823–1841
  • Philips J. H., Lanier L. L. Dissection of the lymphokine-activated killer phenomenon. Relative contribution of peripheral blood natural killer cells and T-lymphocytes to cytolysis. J Exp Med 1986; 164: 814–825
  • Tilden A. B., Itoh K., Balch C. M. Human lymphokine-activated killer (LAK) cells: Identification of two types of effector cells. J Immunol 1987; 138: 1068–1073
  • Landay A. L., Zarcone D., Grossi C. E., Bauer K. Relationship between target cell cycle and susceptibility to natural killer lysis. Cancer Res 1987; 47: 2767–2730
  • Sellins K. S., Cohen J. J. Cytotoxic T lymphocytes induce different types of DNA damage in target cells of different origin. J Immunol 1991; 147: 795–803
  • Cesano A., Lista P., Bellone G., Geuna M., Brizzi M. F., Rossi P. R., Pegoraro L., Oberholzer E., Matera L. Effect of human interleukin 3 on the susceptibility of fresh leukemia cells to interleukin-2-induced lymphokine activated killing activity. Leukemia 1992; 6: 567–573
  • Cesano A., Clark S. C., Santoli D. Cytokine modulation of the susceptibility of acute T-lymphoblastic leukemia cell lines to LAK activity. Leukemia 1993; 7: 404–409
  • McCoy J. L., Herberman R. B., Rosenberg E. B., Donelly F. C., Levine P. H., Alford C. 51 Chromium release assay for cell-mediated cytotoxicity of human leukemia and lymphoid tissue culture cells. Natl Cancer Inst Monogr 1973; 37: 59–67
  • Moore M. A. S., Williams N., Metcalf D. In vitro colony formation by normal and leukemic human hematopoietic cells: characterization of the colony-forming cells. J Natl Cancer Inst 1973; 50: 603–623
  • Lotzova E., Savary C. A., Herberman R. B. Inhibition of clonogenic growth of fresh leukemia cells by unstimulated and IL-2 stimulated NK cells of normal donors. Leuk Res 1987; 11: 1059–1066
  • Lista P., Fierro M. T., Liao X. S., Bonferroni M., Brizzi M. F., Porcu P., Pegoraro L., Foa R. Lymphokine-activated killer (LAK) cells inhibit the clonogenic growth of human leukemic stem cells. Eur J Haematol 1989; 42: 425–430
  • Savary C. A., Lotzova E. Natural killer cell-mediated inhibition of growth of myeloid and lymphoid clonogenic leukemias. Exp Hematol 1989; 17: 183–187
  • Perussia B., Starr S., Abraham S. Human natural killer cells analyzed by B73.1 monoclonal antibody blocking Fc receptor functions. I. Characterization of lymphocyte subset reactive with B73.1. J Immunol 1983; 130: 2133–2141
  • Press H. F., Baines M. G., Rubin P., Shragge P., Patterson M. S. Spontaneous human lymphocyte-mediated cytotoxicity against tumor target cells. IX. The quantitation of natural killer cell activity. J Clin Immunol 1981; 1: 51–64
  • Welte K., Platzer E., Lu L., Gabrilove J. L., Levi E., Mertelsmann R., Moore M. A. S. Purification and biochemical characterization of human pluripotent hematopoietic colony-stimulating factor. Proc Natl Acad Sci USA 1985; 82: 1526–1530
  • Archimbaud E., Thomas X., Vila L., Sabido O., Campos L. Expression of adhesion molecules in adult acute leukemia. Molecular biology of haemato-poiesis III, N. G. Abraham, R. K. Shadduck, A. S. Levine, F. Takaku. Andover, Intercept 1994; vol 3: 305–312
  • Hansson M., Kiessling R., Andersson B. Human fetal thymus and bone marrow contain target cells for natural killer cells. Eur J Immunol 1981; 11: 8–14
  • Hansson M., Karre K., Kiessling R., Roder J. C., Andersson B., Hatry P. Natural killer cell targets in the mouse thymus: characteristics of the sensitive cell population. J Immunol 1979; 123: 765–771
  • Degliantoni G., Perussia B., Mongoni L., Trinchieri G. Inhibition of bone marrow colony formation by human natural killer cells and by natural killer cell-derived colony-inhibiting activity. J Exp Med 1985; 161: 1152–1159
  • Nitta T., Yagita H., Sato K., Okamura K. Involvement of CD56 (NKH-1/Leu-19) as an adhesion molecule in natural killer-target cell interaction. J Exp Med 1989; 170: 1757–1761
  • Lanier L. L., Testi R., Bindl J., Philips J. H. Identity of Leu-19 (CD56) leukocyte differentiation antigen and neural cell adhesion molecule. J Exp Med 1989; 169: 2233–2238
  • Scheper R. J., Dalton W. S., Grogan T. M., Schlosser A., Bellamy W. T., Taylor C. W., Scuderi P., Spier C. Altered expression of P-glycoprotein and cellular adhesion molecules on human multi-drug-resistant tumor cells does not affect their susceptibility to NK- and LAK-mediated cytotoxicity. Int J Cancer 1991; 48: 562–567
  • Palucka A. K., Porwit A., Reizenstein P. Resistance of leukemic blasts to lymphokine activated killer (LAK)-mediated cytotoxicity is not related to their adhesion properties. Eur J Haematol 1991; 47: 123–127
  • Quilley-Mary A., Caverec L., Kermarrec N., Marchiol-Fournigault C., Gil M. L., Conjeaud H., Fradelizi D. Target lysis by human LAK cells is critically dependent upon target binding properties, but LFA-1, LFA-3 and Icam-1 are not the major adhesion ligands on targets. Int J Cancer 1991; 47: 473–479
  • Archimbaud E., Thomas X., Campos L., Magaud J. P., Fiere D., Dore J. P. Susceptibility of adult acute lymphoblastic leukemia blasts to lysis by lymphokine-activated killer cells. Leukemia 1991; 5: 967–971
  • Triozzi P. L., Eicher D. M., Smoot J., Rinehart J. J. Modulation of leukemic cell sensitivity to lymphokine-activated killer cytolysis: Role of intercellular adhesion molecule-1. Exp Hematol 1992; 20: 1072–1076
  • Arienti F., Gambacorti-Passerini C., Borin L., Rivoltini L., Orazi A., Pogliani E. M., Corneo G., Parmiani G. Increased susceptibility to lymphokine activated killer (LAK) lysis of relapsing vs. newly diagnosed acute leukemic cells without changes in drug resistance or in the expression of adhesion molecules. Ann Oncol 1992; 3: 155–162
  • Anglaret B., Thomas X., Moullet I., Bailly M., Maritaz O., Fiere D., Archimbaud E. Differential adhesiveness on purified supports between blood and marrow leukemic cells having similar pattern of VLA adhesion molecule expression. Exp Hematol 1996; 24: 1079

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.