88
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Preventive effect of nucleoprotein on hindlimb unloading-induced capillary regression in rat soleus muscle

, , , &
Pages 220-227 | Accepted 13 Jul 2013, Published online: 24 Sep 2013

References

  • Bowler WB, Buckley KA, Gartland A, Hipskind RA, Bilbe G, Gallagher JA (2001). Extracellular nucleotide signaling: a mechanism for integrating local and systemic responses in the activation of bone remodeling. Bone 28: 507–512.
  • Charifi N, Kadi F, Feasson L, Costes F, Geyssant A, Denis C (2003). Enhancement of microvessel tortuosity in the vastus lateralis muscle of old men in response to endurance training. J. Physiol. 554: 559–569.
  • Coggan AR, Spina RJ, King DS, Rogers MA, Brown M, Nemeth PM, Holloszy JO (1992). Histochemical and enzymatic comparison of the gastrocnemius muscle of young and elderly men and women. J. Gerontol. 47: 71–76.
  • de Boer MD, Maganaris CN, Seynnes OR, Rennie MJ, Narici MV (2007). Time course of muscular, neural and tendinous adaptations to 23 day unilateral lower-limb suspension in young men. J. Physiol. 583: 1079–1091.
  • Desplanches D, Mayet MH, Sempore B, Flandrois R (1987). Structural and functional responses to prolonged hindlimb suspension in rat muscle. J. Appl. Physiol. 63: 558–563.
  • Dupont JJ, Farquhar WB, Townsend RR, Edwards DG (2011). Ascorbic acid or L-arginine improves cutaneous microvascular function in chronic kidney disease. J. Appl. Physiol. 111: 1561–1567.
  • Fujino H, Kohzuki H, Takeda I, Kiyooka T, Miyasaka T, Mohri S, Shimizu J, Kajiya F (2005). Regression of capillary network in atrophied soleus muscle induced by hindlimb unweighting. J. Appl. Physiol. 98: 1407–1413.
  • Gewaltig MT, Kojda G (2002). Vasoprotection by nitric oxide: mechanisms and therapeutic potential. Cardiovasc. Res. 55: 250–260.
  • Gollnick PD, Armstrong RB, Saltin B, Saubert CW IV, Sembrowich WL, Shepherd RE (1973). Effect of training on enzyme activity and fiber composition of human skeletal muscle. J. Appl. Physiol. 34: 107–111.
  • Hansen-Smith FM, Blackwell LH, Joswiak GR (1992). Expression of muscle capillary alkaline phosphatase is affected by hypoxia. J. Appl. Physiol. 73: 776–780.
  • Hock MB, Kralli A (2009). Transcriptional control of mitochondrial biogenesis and function. Ann. Rev. Physiol. 71: 177–203.
  • Holloszy JO, Oscai LB, Don IJ, Mole PA (1970). Mitochondrial citric acid cycle and related enzymes: adaptive response to exercise. Biochem. Biophys. Res. Commun. 40: 1368–1373.
  • Ishihara A, Hirofuji C, Nakatani T, Itoh K, Itoh M, Katsuta S (2002). Effect of running exercise with increasing loads on tibialis anterior muscle fibres in mice. Exp. Physiol. 87: 113–116.
  • Ishihara A, Kawano F, Ishioka N, Oishi H, Higashibata A, Shimazu T, Ohira Y (2004). Effects of running exercise during recovery from hindlimb unloading on soleus muscle fibers and their spinal motoneurons in rats. Neurosci. Res. 48: 119–127.
  • Khazaei M, Moshayedi MA, Teimouri Jervekani M, Aghili Sh, Montazeri S, Mehdipour Dastjerdi R, Hashemzehi F, Hashemi, Jazi H (2012). Effect of L-arginine and L-NAME on coronary angiogenesis in male diabetic rats. J. Res. Med. Sci. 17: 247–251.
  • Khungar V, Han SH (2010). A systematic review of side effects of nucleoside and nucleotide drugs used for treatment of chronic hepatitis B. Curr. Hepat. Rep. 9: 75–90.
  • Kim JI, Kim HY, Kim SM, Lee SA, Son YH, Eo SK, Rhim BY, Kim K (2011). Extracellular nucleotides can induce chemokine (C-C motif) ligand 2 expression in human vascular smooth muscle cells. Korean J. Physiol. Pharmacol. 15: 31–36.
  • Koga Y, Akita Y, Nishioka J, Yatsuga S, Povalko N, Katayama K, Matsuishi T (2007). MELAS and L-arginine therapy. Mitochondrion 7: 133–139.
  • Koga Y, Povalko N, Nishioka J, Katayama K, Kakimoto N, Matsuishi T (2010). MELAS and L-arginine therapy: pathophysiology of stroke-like episodes. Ann. NY Acad. Sci. 1201: 104–110.
  • Martin TP, Vailas AC, Durivage JB, Edgerton VR Castleman KR (1985). Quantitative histochemical determination of muscle enzymes: biochemical verification. J. Histochem. Cytochem. 33: 1053–1059.
  • Matsumura M, Ueda C, Shiroishi K, Esaki K, Ohmori F, Yamaguchi K, Ichimura S, Kurosawa Y, Kime R, Osada T, Murase N, Katsumura T, Hoshika A, Hamaoka T (2008). Low-volume muscular endurance and strength training during 3-week forearm immobilization was effective in preventing functional deterioration. Dyn. Med. 7: 1–8.
  • Matsunaga M, Ohtaki H, Takaki A, Iwai Y, Yin L, Mizuguchi H, Miyake T, Usumi K, Shioda S (2003). Nucleoprotamine diet derived from salmon soft roe protects mouse hippocampal neurons from delayed cell death after transient forebrain ischemia. Neurosci. Res. 47: 269–276.
  • Maxwell AJ, Ho HV, Le CQ, Lin PS, Bernstein D, Cooke JP (2001). L-arginine enhances aerobic exercise capacity in association with augmented nitric oxide production. J. Appl. Physiol. 90: 933–938.
  • McDonald KS, Delp MD, Fitts RH (1992). Fatigability and blood flow in the rat gastrocnemius-plantaris-soleus after hindlimb suspension. J. Appl. Physiol. 73: 1135–1140.
  • Miki T, Miura S, Kai Y, Kano Y, Oishi Y, Ezaki O (2011). Skeletal muscle-specific expression of PGC-1α-b, an exercise-responsive isoform, increases exercise capacity and peak oxygen uptake. PLoS One 6: 1–13.
  • Morey ER, Sabelman EE, Turner RT, Baylink DJ (1979). A new rat model simulating some aspects of space flight. Physiologist 22: 23–24.
  • Murohara T, Witzenbichler B, Spyridopoulos I, Asahara T, Ding B, Sullivan A, Losordo DW, Isner JM (1999). Role of endothelial nitric oxide synthase in endothelial cell migration. Arterioscler. Thromb. Vasc. Biol. 19: 1156–1161.
  • Nachlas MM, Tsou KC, De Souza E, Cheng CS, Seligman AM (1957). Cytochemical demonstration of succinic dehydrogenase by the use of a new p-nitrophenyl substituted ditetrazole. J. Histochem. Cytochem. 5: 420–436.
  • Nakazato K, Song H (2008). Increased oxidative properties of gastrocnemius in rats fed on a high-protein diet. J. Nutr. Biochem. 19: 26–32.
  • Ohtaki H, Yofu S, Nakamachi T, Satoh K, Shimizu A, Mori H, Sato A, Iwakura Y, Matsunaga M, Shioda S (2010). Nucleoprotein diet ameliorates arthritis symptoms in mice transgenic for human T-cell leukemia virus type I (HTLV-1). J. Clin. Biochem. Nutr. 46: 93–104.
  • Olesen J, Kiilerich K, Pilegaard H (2010). PGC-1alpha-mediated adaptations in skeletal muscle. Pflugers Arch. 460: 153–162.
  • Perez MJ, Sanchez-Medina F, Torres M, Gil A, Suarez A (2004). Dietary nucleotides enhance the liver redox state and protein synthesis in cirrhotic rats. J. Nutr. 134: 2504–2508.
  • Poole DC, Mathieu-Costello O (1996). Relationship between fiber capillarization and mitochondria1 volume density in control and trained rat soleus and plantaris muscles. Microcirculation 3: 175–186.
  • Rutter J, Winge DR, Schiffman JD (2010). Succinate dehydrogenase-assembly, regulation and role in human disease. Mitochondrion 10: 393–401.
  • Silvennoinen M, Rinnankoski-Tuikka R, Vuento M, Hulmi JJ, Torvinen S, Lehti M, Kivela R, Kainulainen H (2013). High-fat feeding induces angiogenesis in skeletal muscle and activates angiogenic pathways in capillaries. Angiogenesis 16: 297–307.
  • Spradley BD, Crowley KR, Tai CY, Kendall KL, Fukuda DH, Esposito EN, Moon SE, Moon JR (2012). Ingesting a pre-workout supplement containing caffeine, B-vitamins, amino acids, creatine, and beta-alanine before exercise delays fatigue while improving reaction time and muscular endurance. Nutr. Metab. (Lond.) 9: 1–9.
  • Suzuki J (2009). L-arginine and L-ornithine supplementation facilitates angiogenesis and causes additional effects on exercise-induced angiogenesis in hind-leg muscles. Adv. Exer. Sports Physiol. 15: 101–108.
  • Wang Y, Li X, Guo Y, Chan L, Guan X (2010). alpha-Lipoic acid increases energy expenditure by enhancing adenosine monophosphate-activated protein kinase-peroxisome proliferator-activated receptor-gamma coactivator-1alpha signalling in the skeletal muscle of aged mice. Metabolism 59: 967–976.
  • Wu J, Holstein JD, Upadhyay G, Lin DT, Conway S, Muller E, Lechleiter JD (2007). Purinergic receptor- stimulated IP3-mediated Ca2+ release enhances neuroprotection by increasing astrocyte mitochondrial metabolism during aging. J. Neurosci. 27: 6510–6520.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.