203
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Articular Cartilage Tissue Engineering: Development and Future: A Review

, PhD & , PhD
Pages 68-77 | Received 20 Aug 2012, Accepted 04 Nov 2013, Published online: 13 Feb 2014

References

  • Hunziker EB, Quinn TM, Hauselmann HJ: Quantitative structural organization of normal adult human articular cartilage. Osteoarthritis Cartilage 10: 564–572, 2002
  • Stoddart MJ, Grad S, Eglin D, Alini M: Cells and biomaterials in cartilage tissue engineering. Regen Med 4: 81–98, 2009
  • Eyre D: Collagen of articular cartilage. Arthritis Res 4: 30–35, 2002
  • Klein TJ, Malda J, Sah RL, Hutmacher DW: Tissue engineering of articular cartilage with biomimetic zones. Tissue Eng Part B Rev 15: 143–157, 2009
  • Hyllested JL, Veje K, Ostergaard K: Histochemical studies of the extracellular matrix of human articular cartilage: A review. Osteoarthritis Cartilage 10: 333–343, 2002
  • Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M, Laverty S: Composition and structure of articular cartilage: A template for tissue repair. Clin Orthop Relat Res 391: S26–S33, 2001
  • Cohen NP, Foster RJ, Mow VC: Composition and dynamics of articular cartilage: Structure, function and maintaining healthy state. J Orthop Sports Phys Ther 28: 203–215, 1998
  • Langer R, Vacanti JP: Tissue engineering. Science 260: 920–926, 1993
  • Vinatier C, Mrugala D, Jorgensen C, Guicheux J, Noel D: Cartilage engineering: A crucial combination of cells, biomaterials and biofactors. Trends Biotechnol 27: 307–314, 2009
  • Nakasa T, Ochi M: Cell based therapy for articular cartilage injury. Clin Calcium 21: 890–895, 2011
  • Moreira-Teixeira LS, Georgi N, Leijten J, Wu L, Karperien M: Cartilage tissue engineering. Endocr Dev 21: 102–115, 2011
  • Grande DA, Pitman MI, Peterson L, Menche D, Klein M: The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J Orthop Res 7: 208–218, 1989
  • Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L: Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331: 889–895, 1994
  • Browne JE, Anderson AF, Arciero R, Mandelbaum B, Moseley JB Jr., Micheli LJ, Fu F, Erggelet C: Clinical outcome of autologous chondrocyte implantation at 5 years in US subjects. Clin Orthop Relat Res 237–245, 2005
  • Farr J: Autologous chondrocyte implantation improves patellofemoral cartilage treatment outcomes. Clin Orthop Relat Res 463: 187–194, 2007
  • Mandelbaum B, Browne JE, Fu F, Micheli LJ, Moseley JB Jr., Erggelet C, Anderson AF: Treatment outcomes of autologous chondrocyte implantation for full-thickness articular cartilage defects of the trochlea. Am J Sports Med 35: 915–921, 2007
  • Marlovits S, Zeller P, Singer P, Resinger C, Vecsei V: Cartilage repair: Generations of autologous chondrocyte transplantation. Eur J Radiol 57: 24–31, 2006
  • Peterson L, Brittberg M, Kiviranta I, Akerlund EL, Lindahl A: Autologous chondrocyte transplantation: Biomechanics and long-term durability. Am J Sports Med 30: 2–12, 2002
  • Amin AA, Bartlett W, Gooding CR, Sood M, Skinner JA, Carrington RW, Briggs TW, Bentley G: The use of autologous chondrocyte implantation following and combined with anterior cruciate ligament reconstruction. Int Orthop 30: 48–53, 2006
  • Bartlett W, Skinner JA, Gooding CR, Carrington RW, Flanagan AM, Briggs TW, Bentley G: Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: A prospective, randomised study. J Bone Joint Surg Br 87: 640–645, 2005
  • Cherubino P, Grassi FA, Bulgheroni P, Ronga M: Autologous chondrocyte implantation using a bilayer collagen membrane: A preliminary report. J Orthop Surg (Hong Kong) 11: 10–15, 2003
  • Gooding CR, Bartlett W, Bentley G, Skinner JA, Carrington R, Flanagan A: A prospective, randomised study comparing two techniques of autologous chondrocyte implantation for osteochondral defects in the knee: Periosteum covered versus type I/III collagen covered. Knee 13: 203–210, 2006
  • Gudas R, Kalesinskas RJ, Kimtys V, Stankevicius E, Toliusis V, Bernotavicius G, Smailys A: A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthroscopy 21: 1066–1075, 2005
  • Haddo O, Mahroof S, Higgs D, David L, Pringle J, Bayliss M, Cannon SR, Briggs TW: The use of chondrogide membrane in autologous chondrocyte implantation. Knee 11: 51–55, 2004
  • Schneider TE, Karaikudi S: Matrix-induced autologous chondrocyte implantation (maci) grafting for osteochondral lesions of the talus. Foot Ankle Int 30: 810–814, 2009
  • Zheng MH, Willers C, Kirilak L, Yates P, Xu J, Wood D, Shimmin A: Matrix-induced autologous chondrocyte implantation (MACI): Biological and histological assessment. Tissue Eng 13: 737–746, 2007
  • Brittberg M: Cell carriers as the next generation of cell therapy for cartilage repair: A review of the matrix-induced autologous chondrocyte implantation procedure. Am J Sports Med 38: 1259–1271, 2010
  • Gavenis K, Schmidt-Rohlfing B, Mueller-Rath R, Andereya S, Schneider U: In vitro comparison of six different matrix systems for the cultivation of human chondrocytes. In Vitro Cell Dev Biol Anim 42: 159–167, 2006
  • Lin Z, Willers C, Xu J, Zheng MH: The chondrocyte: biology and clinical application. Tissue Eng 12: 1971–1984, 2006
  • Wuelling M, Vortkamp A: Chondrocyte proliferation and differentiation. Endocr Dev 21: 1–11, 2011
  • Loeser RF: Chondrocyte integrin expression and function. Biorheology 37: 109–116, 2000
  • Muir H: The chondrocyte, architect of cartilage: Biomechanics, structure, function and molecular biology of cartilage matrix macromolecules. Bioessays 17: 1039–1048, 1995
  • Manning WK, Bonner WM Jr.: Isolation and culture of chondrocytes from human adult articular cartilage. Arthritis Rheum 10: 235–239, 1967
  • Amano K, Hata K, Sugita A, Takigawa Y, Ono K, Wakabayashi M, Kogo M, et al.: Sox9 family members negatively regulate maturation and calcification of chondrocytes through up-regulation of parathyroid hormone-related protein. Mol Biol Cell 20: 4541–4551, 2009
  • Wenke AK, Grassel S, Moser M, Bosserhoff AK: The cartilage-specific transcription factor Sox9 regulates AP-2epsilon expression in chondrocytes. FEBS J 276: 2494–2504, 2009
  • Dy P, Wang W, Bhattaram P, Wang Q, Wang L, Ballock RT, Lefebvre V: Sox9 directs hypertrophic maturation and blocks osteoblast differentiation of growth plate chondrocytes. Dev Cell 22: 597–609, 2012
  • Chang CF, Ramaswamy G, Serra R: Depletion of primary cilia in articular chondrocytes results in reduced Gli3 repressor to activator ratio, increased Hedgehog signaling and symptoms of early osteoarthritis. Osteoarthritis Cartilage 20: 152–161, 2012
  • Jacobi M, Villa V, Magnussen RA, Neyret P: MACI – A new era? Sports Med Arthrosc Rehabil Ther Technol 3: 10, 2011
  • Schnabel M, Marlovits S, Eckhoff G, Fichtel I, Gotzen L, Vecsei V, Schlegel J: Dedifferentiation-associated changes in morphology and gene expression in primary human articular chondrocytes in cell culture. Osteoarthritis Cartilage 10: 62–70, 2002
  • Lin Z, Fitzgerald JB, Xu J, Willers C, Wood D, Grodzinsky AJ, Zheng MH: Gene expression profiles of human chondrocytes during passaged monolayer cultivation. J Orthop Res 26: 1230–1237, 2008
  • Malda J, van Blitterswijk CA, Grojec M, Martens DE, Tramper J, Riesle J: Expansion of bovine chondrocytes on microcarriers enhances redifferentiation. Tissue Eng 9: 939–948, 2003
  • Cetinkaya G, Kahraman AS, Gumusderelioglu M, Arat S, Onur MA: Derivation, characterization and expansion of fetal chondrocytes on different microcarriers. Cytotechnology 63: 633–643, 2011
  • Appel B, Baumer J, Eyrich D, Sarhan H, Toso S, Englert C, Skodacek D, et al.: Synergistic effects of growth and differentiation factor-5 (GDF-5) and insulin on expanded chondrocytes in a 3-D environment. Osteoarthritis Cartilage 17: 1503–1512, 2009
  • Goepfert C, Lutz V, Lunse S, Kittel S, Wiegandt K, Kammal M, Puschel K, Portner R: Evaluation of cartilage specific matrix synthesis of human articular chondrocytes after extended propagation on microcarriers by image analysis. Int J Artif Organs 33: 204–218, 2010
  • Hsieh-Bonassera ND, Wu I, Lin JK, Schumacher BL, Chen AC, Masuda K, Bugbee WD, Sah RL: Expansion and redifferentiation of chondrocytes from osteoarthritic cartilage: Cells for human cartilage tissue engineering. Tissue Eng Part A 15: 3513–3523, 2009
  • Vinatier C, Bouffi C, Merceron C, Gordeladze J, Brondello JM, Jorgensen C, Weiss P, et al.: Cartilage tissue engineering: Towards a biomaterial-assisted mesenchymal stem cell therapy. Curr Stem Cell Res Ther 4: 318–329, 2009
  • Bruder SP, Jaiswal N, Haynesworth SE: Growth kinetics, self-renewal and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64: 278–294, 1997
  • Weissman IL: Translating stem and progenitor cell biology to the clinic: Barriers and opportunities. Science 287: 1442–1446, 2000
  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, et al.: Minimal criteria for defining multipotent mesenchymal stromal cells: The International Society for Cellular Therapy position statement. Cytotherapy 8: 315–317, 2006
  • Bhatia R, Hare JM: Mesenchymal stem cells: Future source for reparative medicine. Congest Heart Fail 11: 87–91, 2005
  • Noel D, Djouad F, Bouffi C, Mrugala D, Jorgensen C: Multipotent mesenchymal stromal cells and immune tolerance. Leuk Lymphoma 48: 1283–1289, 2007
  • Hellingman CA, Koevoet W, van Osch GJ: Can one generate stable hyaline cartilage from adult mesenchymal stem cells? A developmental approach. J Tissue Eng Regen Med, 2011
  • Elder SH, Cooley AJ, Jr., Borazjani A, Sowell BL, To H, Tran SC: Production of hyaline-like cartilage by bone marrow mesenchymal stem cells in a self-assembly model. Tissue Eng Part A 15: 3025–3036, 2009
  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, et al.: Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng 7: 211–228, 2001
  • Rada T, Reis RL, Gomes ME: Adipose tissue-derived stem cells and their application in bone and cartilage tissue engineering. Tissue Eng Part B Rev 15: 113–125, 2009
  • Park JS, Shim MS, Shim SH, Yang HN, Jeon SY, Woo DG, Lee DR, et al.: Chondrogenic potential of stem cells derived from amniotic fluid, adipose tissue or bone marrow encapsulated in fibrin gels containing TGF-beta3. Biomaterials 32: 8139–8149, 2011
  • Musumeci G, Lo Furno D, Loreto C, Giuffrida R, Caggia S, Leonardi R, Cardile V: Mesenchymal stem cells from adipose tissue which have been differentiated into chondrocytes in three-dimensional culture express lubricin. Exp Biol Med (Maywood) 236: 1333–1341, 2011
  • Jackson WM, Aragon AB, Djouad F, Song Y, Koehler SM, Nesti LJ, Tuan RS: Mesenchymal progenitor cells derived from traumatized human muscle. J Tissue Eng Regen Med 3: 129–138, 2009
  • Junker JP, Sommar P, Skog M, Johnson H, Kratz G: Adipogenic, chondrogenic and osteogenic differentiation of clonally derived human dermal fibroblasts. Cells Tissues Organs 191: 105–118, 2010
  • Sommar P, Pettersson S, Ness C, Johnson H, Kratz G, Junker JP: Engineering three-dimensional cartilage- and bone-like tissues using human dermal fibroblasts and macroporous gelatine microcarriers. J Plast Reconstr Aesthet Surg 63: 1036–1046, 2010
  • De Bari C, Dell'Accio F, Tylzanowski P, Luyten FP: Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44: 1928–1942, 2001
  • Hwang NS, Kim MS, Sampattavanich S, Baek JH, Zhang Z, Elisseeff J: Effects of three-dimensional culture and growth factors on the chondrogenic differentiation of murine embryonic stem cells. Stem Cells 24: 284–291, 2006
  • Seda Tigli R, Ghosh S, Laha MM, Shevde NK, Daheron L, Gimble J, Gumusderelioglu M, Kaplan DL: Comparative chondrogenesis of human cell sources in 3D scaffolds. J Tissue Eng Regen Med 3: 348–360, 2009
  • de Mara CS, Duarte AS, Sartori-Cintra AR, Luzo AC, Saad ST, Coimbra IB: Chondrogenesis from umbilical cord blood cells stimulated with BMP-2 and BMP-6. Rheumatol Int, 2012
  • Saleh FA, Genever PG: Turning round: Multipotent stromal cells, a three-dimensional revolution? Cytotherapy 13: 903–912, 2011
  • Huckle J, Dootson G, Medcalf N, McTaggart S, Wright E, Carter A, Schreiber R, et al.: Differentiated chondrocytes for cartilage tissue engineering. Novartis Found Symp 249: 103–112(discussion 112–7, 170–4, 239–41), 2003
  • Jin X: Recent progress of researches in cartilage tissue engineering. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 25: 187–192, 2011
  • Lettry V, Hosoya K, Takagi S, Okumura M: Coculture of equine mesenchymal stem cells and mature equine articular chondrocytes results in improved chondrogenic differentiation of the stem cells. Jpn J Vet Res 58: 5–15, 2010
  • Liu X, Sun H, Yan D, Zhang L, Lv X, Liu T, Zhang W, et al.: In vivo ectopic chondrogenesis of BMSCs directed by mature chondrocytes. Biomaterials 31: 9406–9414, 2010
  • Yang HN, Park JS, Na K, Woo DG, Kwon YD, Park KH: The use of green fluorescence gene (GFP)-modified rabbit mesenchymal stem cells (rMSCs) co-cultured with chondrocytes in hydrogel constructs to reveal the chondrogenesis of MSCs. Biomaterials 30: 6374–6385, 2009
  • Yonenaga K, Nishizawa S, Fujihara Y, Asawa Y, Sanshiro K, Nagata S, Takato T, Hoshi K: The optimal conditions of chondrocyte isolation and its seeding in the preparation for cartilage tissue engineering. Tissue Eng Part C Methods 16: 1461–1469, 2010
  • Klein TJ, Schumacher BL, Schmidt TA, Li KW, Voegtline MS, Masuda K, Thonar EJ, Sah RL: Tissue engineering of stratified articular cartilage from chondrocyte subpopulations. Osteoarthritis Cartilage 11: 595–602, 2003
  • Grande DA, Halberstadt C, Naughton G, Schwartz R, Manji R: Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. J Biomed Mater Res 34: 211–220, 1997
  • Iwasa J, Engebretsen L, Shima Y, Ochi M: Clinical application of scaffolds for cartilage tissue engineering. Knee Surg Sports Traumatol Arthrosc 17: 561–577, 2009
  • Danisovic L, Varga I, Zamborsky R, Bohmer D: The tissue engineering of articular cartilage: cells, scaffolds and stimulating factors. Exp Biol Med (Maywood) 237: 10–17, 2012
  • Kerker JT, Leo AJ, Sgaglione NA: Cartilage repair: Synthetics and scaffolds: Basic science, surgical techniques and clinical outcomes. Sports Med Arthrosc 16: 208–216, 2008
  • Knudson W, Casey B, Nishida Y, Eger W, Kuettner KE, Knudson CB: Hyaluronan oligosaccharides perturb cartilage matrix homeostasis and induce chondrocytic chondrolysis. Arthritis Rheum 43: 1165–1174, 2000
  • Bulpitt P, Aeschlimann D: New strategy for chemical modification of hyaluronic acid: Preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels. J Biomed Mater Res 47: 152–169, 1999
  • Sims CD, Butler PE, Cao YL, Casanova R, Randolph MA, Black A, Vacanti CA, Yaremchuk MJ: Tissue engineered neocartilage using plasma derived polymer substrates and chondrocytes. Plast Reconstr Surg 101: 1580–1585, 1998
  • Hunziker EB: Articular cartilage repair: basic science and clinical progress: A review of the current status and prospects. Osteoarthritis Cartilage 10: 432–463, 2002
  • Elder SH, Nettles DL, Bumgardner JD: Synthesis and characterization of chitosan scaffolds for cartilage-tissue engineering. Methods Mol Biol 238: 41–48, 2004
  • Xia W, Liu W, Cui L, Liu Y, Zhong W, Liu D, Wu J, et al.: Tissue engineering of cartilage with the use of chitosan-gelatin complex scaffolds. J Biomed Mater Res B Appl Biomater 71: 373–380, 2004
  • Griffon DJ, Sedighi MR, Schaeffer DV, Eurell JA, Johnson AL: Chitosan scaffolds: interconnective pore size and cartilage engineering. Acta Biomater 2: 313–320, 2006
  • Correia C, Moreirateixeira LS, Moroni L, Reis RL, van Blitterswijk C, Karperien M, Mano J: Chitosan Scaffolds Containing Hyaluronic Acid for Cartilage Tissue Engineering. Tissue Eng Part C Methods, 2011
  • Abarrategi A, Lopiz-Morales Y, Ramos V, Civantos A, Lopez-Duran L, Marco F, Lopez-Lacomba JL: Chitosan scaffolds for osteochondral tissue regeneration. J Biomed Mater Res A 95: 1132–1141, 2010
  • Akanji OO, Lee DA, Bader DA: The effects of direct current stimulation on isolated chondrocytes seeded in 3D agarose constructs. Biorheology 45: 229–243, 2008
  • Sheehy EJ, Buckley CT, Kelly DJ: Chondrocytes and bone marrow-derived mesenchymal stem cells undergoing chondrogenesis in agarose hydrogels of solid and channelled architectures respond differentially to dynamic culture conditions. J Tissue Eng Regen Med 5: 747–758, 2011
  • Wei Y, Zeng W, Wan R, Wang J, Zhou Q, Qiu S, Singh SR: Chondrogenic differentiation of induced pluripotent stem cells from osteoarthritic chondrocytes in alginate matrix. Eur Cell Mater 23: 1–12, 2012
  • Park H, Lee KY: Alginate/hyaluronate hydrogels for cartilage regeneration. J Control Release 152: e233–e234, 2011
  • Jonitz A, Lochner K, Peters K, Salamon A, Pasold J, Mueller-Hilke B, Hansmann D, Bader R: Differentiation capacity of human chondrocytes embedded in alginate matrix. Connect Tissue Res 52: 503–511, 2011
  • Drury JL, Mooney DJ: Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 24: 4337–4351, 2003
  • Spiller KL, Maher SA, Lowman AM: Hydrogels for the repair of articular cartilage defects. Tissue Eng Part B Rev 17: 281–299, 2011
  • Wang QG, Hughes N, Cartmell SH, Kuiper NJ: The composition of hydrogels for cartilage tissue engineering can influence glycosaminoglycan profile. Eur Cell Mater 19: 86–95, 2010
  • Amini AA, Nair LS: Injectable hydrogels for bone and cartilage repair. Biomed Mater 7: 024105, 2012
  • Zheng X, Yang F, Wang S, Lu S, Zhang W, Liu S, Huang J, et al.: Fabrication and cell affinity of biomimetic structured PLGA/articular cartilage ECM composite scaffold. J Mater Sci Mater Med 22: 693–704, 2011
  • Pelaez D, Arita N, Cheung HS: Extracellular signal-regulated kinase (ERK) dictates osteogenic and/or chondrogenic lineage commitment of mesenchymal stem cells under dynamic compression. Biochem Biophys Res Commun 417: 1286–1291, 2012
  • Schatti O, Grad S, Goldhahn J, Salzmann G, Li Z, Alini M, Stoddart MJ: A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells. Eur Cell Mater 22: 214–225, 2011
  • Kock LM, Ravetto A, van Donkelaar CC, Foolen J, Emans PJ, Ito K: Tuning the differentiation of periosteum-derived cartilage using biochemical and mechanical stimulations. Osteoarthritis Cartilage 18: 1528–1535, 2010
  • Elder BD, Athanasiou KA: Hydrostatic pressure in articular cartilage tissue engineering: from chondrocytes to tissue regeneration. Tissue Eng Part B Rev 15: 43–53, 2009
  • McMahon LA, O'Brien FJ, Prendergast PJ: Biomechanics and mechanobiology in osteochondral tissues. Regen Med 3: 743–759, 2008
  • Grodzinsky AJ, Levenston ME, Jin M, Frank EH: Cartilage tissue remodeling in response to mechanical forces. Annu Rev Biomed Eng 2: 691–713, 2000
  • Tran SC, Cooley AJ, Elder SH: Effect of a mechanical stimulation bioreactor on tissue engineered, scaffold-free cartilage. Biotechnol Bioeng 108: 1421–1429, 2011
  • Santoro R, Olivares AL, Brans G, Wirz D, Longinotti C, Lacroix D, Martin I, Wendt D: Bioreactor based engineering of large-scale human cartilage grafts for joint resurfacing. Biomaterials 31: 8946–8952, 2010
  • Schulz RM, Bader A: Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur Biophys J 36: 539–568, 2007
  • Tarng YW, Huang BF, Su FC: A novel recirculating flow-perfusion bioreactor for periosteal chondrogenesis. Int Orthop 36: 863–868, 2012
  • El-Ayoubi R, DeGrandpre C, DiRaddo R, Yousefi AM, Lavigne P: Design and dynamic culture of 3D-scaffolds for cartilage tissue engineering. J Biomater Appl 25: 429–444, 2011
  • Pelaez D, Huang CY, Cheung HS: Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds. Stem Cells Dev 18: 93–102, 2009
  • Huang CY, Reuben PM, Cheung HS: Temporal expression patterns and corresponding protein inductions of early responsive genes in rabbit bone marrow-derived mesenchymal stem cells under cyclic compressive loading. Stem Cells 23: 1113–1121, 2005
  • Georges PC, Janmey PA: Cell type-specific response to growth on soft materials. J Appl Physiol 98: 1547–1553, 2005
  • Strniskova M, Barancik M, Ravingerova T: Mitogen-activated protein kinases and their role in regulation of cellular processes. Gen Physiol Biophys 21: 231–255, 2002
  • Campbell JJ, Lee DA, Bader DL: Dynamic compressive strain influences chondrogenic gene expression in human mesenchymal stem cells. Biorheology 43: 455–470, 2006
  • Li Z, Kupcsik L, Yao SJ, Alini M, Stoddart MJ: Mechanical load modulates chondrogenesis of human mesenchymal stem cells through the TGF-beta pathway. J Cell Mol Med 14: 1338–1346, 2010
  • Horbelt D, Denkis A, Knaus P: A portrait of Transforming Growth Factor beta superfamily signalling: Background matters. Int J Biochem Cell Biol 44: 469–474, 2012
  • Krejci P, Prochazkova J, Bryja V, Kozubik A, Wilcox WR: Molecular pathology of the fibroblast growth factor family. Hum Mutat 30: 1245–1255, 2009
  • Ellman MB, An HS, Muddasani P, Im HJ: Biological impact of the fibroblast growth factor family on articular cartilage and intervertebral disc homeostasis. Gene 420: 82–89, 2008
  • Krywicki RF, Yee D: The insulin-like growth factor family of ligands, receptors and binding proteins. Breast Cancer Res Treat 22: 7–19, 1992
  • Vardatsikos G, Sahu A, Srivastava AK: The insulin-like growth factor family: molecular mechanisms, redox regulation and clinical implications. Antioxid Redox Signal 11: 1165–1190, 2009
  • Dierick H, Bejsovec A: Cellular mechanisms of wingless/Wnt signal transduction. Curr Top Dev Biol 43: 153–190, 1999
  • Sonderegger S, Pollheimer J, Knofler M: Wnt signalling in implantation, decidualisation and placental differentiation – Review. Placenta 31: 839–847, 2010
  • Burglin TR: The Hedgehog protein family. Genome Biol 9: 241, 2008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.