207
Views
20
CrossRef citations to date
0
Altmetric
Research Article

In vitro cytotoxic activity of cationic paclitaxel nanoparticles on MDR-3T3 cells

, , , &
Pages 468-476 | Received 25 Sep 2009, Accepted 24 Nov 2009, Published online: 08 Jan 2010

References

  • Alahari SK, DeLong R, Fisher MH, Dean NM, Viliet P, Juliano RL. (1998). Novel chemically modified oligonucleotides provide potent inhibition of P-glycoprotein expression. J Pharmacol Exp Ther, 286: 419–428.
  • Almofti MR, Harashima H, Shinohara Y, Almofti A, Baba Y, Kiwada H. (2003). Cationic liposome-mediated gene delivery: biophysical study and mechanism of internalization. Arch Biochem Biophys, 410: 246–253.
  • Chavanpatil MD, Patil Y, Panyam J. (2006). Susceptibility of nanoparticle-encapsulated paclitaxel to P-glycoprotein-mediated drug efflux. Int J Pharm, 320: 150–156.
  • Chawla JS, Amiji MM. (2002). Biodegradable poly(epsilon-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int J Pharm, 249: 127–138.
  • Constantinides PP, Lambert KJ, Tustian AK, Schneider B, Lalji S, Ma W, Wentzel B, Kessler D, Worah D, Quay SC. (2000). Formulation development and antitumor activity of a filter-sterilizable emulsion of paclitaxel. Pharm Res, 17: 175–182.
  • Damascelli B, Patelli GL, Lanocita R, Di Tolla G, Frigerio LF, Marchianò A, Garbagnati F, Spreafico C, Tichà V, Gladin CR, Palazzi M, Crippa F, Oldini C, Calò S, Bonaccorsi A, Mattavelli F, Costa L, Mariani L, Cantù G. (2003). A novel intraarterial chemotherapy using paclitaxel in albumin nanoparticles to treat advanced squamous cell carcinoma of the tongue:preliminary findings. AJR Am J Roentgenol, 181: 253–260.
  • DriessenWH Fujii, N, Tamamura H, Sullivan SM. (2008). Development of peptide-targeted lipoplexes to CXCR4-expressing rat glioma cells and rat proliferating endothelial cells. Mol Ther, 16: 516–524.
  • Gregoriadis G, Neerunjun DE. (1974). Control of the rate of hepatic uptake and metabolism of liposome-entrapped proteins injected into rats. Biochem J, 129: 123–133.
  • He L, Wang GL, Zhang Q. (2003). An alternative paclitaxel microemulsion formulation: hypersensitivity evaluation and pharmacokinetic profile. Int J Pharm, 250: 45–50.
  • Homan R, Hamelehle KL. (1998). Phospholipase A2 relieves phosphatidylcholine inhibition of micellar cholesterol absorption and transport by human intestinal cell line Caco-2. J Lipid Res, 39: 1197–1209.
  • Horwitz SB. (1994). Taxol (paclitaxel): mechanisms of action. Ann Oncol, 5 Suppl 6: S3–S6.
  • Jordan MA. (2002). Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr Med Chem Anticancer Agents, 2: 1–17.
  • Kaiser S, Toborek M. (2003). High-efficiency transfection of human endothelial cells mediated by cationic lipids. J Vasc Res, 38: 133–143.
  • Kan P, Chen ZB, Lee CJ, Chu IM. (1999). Development of nonionic surfactant/phospholipid o/w emulsion as a paclitaxel delivery system. J Control Release, 58: 271–278.
  • Krishna R, Mayer LD. (2000). Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci, 11: 265–283.
  • Krishnadas A, Rubinstein I, Onyüksel H. (2003). Sterically stabilized phospholipid mixed micelles: in vitro evaluation as a novel carrier for water-insoluble drugs. Pharm Res, 20: 297–302.
  • Kunstfeld R, Wickenhauser G, Michaelis U, Teifel M, Umek W, Naujoks K, Wolff K, Petzelbauer P. (2003). Paclitaxel encapsulated in cationic liposomes diminishes tumor angiogenesis and melanoma growth in a “humanized” SCID mouse model. J Invest Dermatol, 120: 476–482.
  • Lee MK, Lim SJ, Kim CK. (2007). Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials, 28: 2137–2146.
  • Lepage G, Yesair DW, Ronco N, Champagne J, Bureau N, Chemtob S, Bérubé D, Roy CC. (2002). Effect of an organized lipid matrix on lipid absorption and clinical outcomes in patients with cystic fibrosis. J Pediatr, 141: 178–185.
  • Liggins RT, Burt HM. (2002). Polyether-polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations. Adv Drug Deliv Rev, 54: 191–202.
  • Lukyanov AN, Gao Z, Torchilin VP. (2003). Micelles from polyethylene glycol/phosphatidylethanolamine conjugates for tumor drug delivery. J Control Release, 91: 97–102.
  • Meisner D, Pringle J, Mezei M. (1989). Liposomal ophthalmic drug delivery. III. Pharmacodynamic and biodisposition studies of atropine. Int J Pharm, 55: 105–113.
  • Mitra A, Lin S. (2003). Effect of surfactant on fabrication and characterization of paclitaxel-loaded polybutylcyanoacrylate nanoparticulate delivery systems. J Pharm Pharmacol, 55: 895–902.
  • Müller RH, Jacobs C, Kayser O. (2001). Nanosuspensions as particulate drug formulations in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliv Rev, 47: 3–19.
  • Nässberger L, Bergstrand A, DePierre JW. (1991). An electron and fluorescence microscopic study of LLC-PK1 cells, a kidney epithelial cell line: normal morphology and cyclosporin A- and cremophor-induced alterations. Int J Exp Pathol, 72: 365–378.
  • Nomura T, Koreeda N, Yamashita F, Takakura Y, Hashida M. (1998). Effect of particle size and charge on the disposition of lipid carriers after intratumoral injection into tissue-isolated tumors. Pharm Res, 15: 128–132.
  • Ota T, Maeda M, Tatsuka M. (2002). Cationic liposomes with plasmid DNA influence cancer metastatic capability. Anticancer Res, 22: 4049–4052.
  • Potineni A, Lynn DM, Langer R, Amiji MM. (2003). Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive biodegradable system for paclitaxel delivery. J Control Release, 86: 223–234.
  • Rampone AJ, Long LW. (1977). The effect of phosphatidylcholine and lysophosphatidylcholine on the absorption and mucosal metabolism of oleic acid and cholesterol in vitro. Biochim Biophys Acta, 486: 500–510.
  • Rodrigues DG, Covolan CC, Coradi ST, Barboza R, Maranhão RC. (2002). Use of a cholesterol-rich emulsion that binds to low-density lipoprotein receptors as a vehicle for paclitaxel. J Pharm Pharmacol, 54: 765–772.
  • Rowinsky EK, Donehower RC. (1995). Paclitaxel (taxol). N Engl J Med, 332: 1004–1014.
  • Schmitt-Sody M, Strieth S, Krasnici S, Sauer B, Schulze B, Teifel M, Michaelis U, Naujoks K, Dellian M. (2003). Neovascular targeting therapy: paclitaxel encapsulated in cationic liposomes improves antitumoral efficacy. Clin Cancer Res, 9: 2335–2341.
  • Seow WY, Xue JM, Yang YY. (2007). Targeted and intracellular delivery of paclitaxel using multi-functional polymeric micelles. Biomaterials, 28: 1730–1740.
  • Son K, Alkan H. (1989). Liposomes prepared dynamically by interactions between bile salt and phospholipid molecules. Biochim Biophys Acta, 981: 288–294.
  • Steger DL, Desnick JR. (1977). Enzyme therapy VI: comparative in vivo fates and effects on lysosomal integrity of enzymes entrapped in negatively and positively charged liposomes. Biochim Biophys Acta, 464: 530–546.
  • Thurston G, McLean JW, Rizen M, Baluk P, Haskell A, Murphy TJ, Hanahan D, McDonald DM. (1998). Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J Clin Invest, 101: 1401–1413.
  • Veldhoen S, Laufer SD, Trampe A, Restle T. (2006). Cellular delivery of small interfering RNA by a non-covalently attached cell-penetrating peptide: quantitative analysis of uptake and biological effect. Nucleic Acids Res, 34: 6561–6573.
  • Viola G, Mietto L, Secchi FE, Ping L, Bruni A. (1993). Absorption and distribution of arachidonate in rats receiving lysophospholipids by oral route. J Lipid Res, 34: 1843–1852.
  • Wang J, Mongayt D, Torchilin VP. (2005). Polymeric micelles for delivery of poorly soluble drugs: preparation and anticancer activity in vitro of paclitaxel incorporated into mixed micelles based on poly(ethylene glycol)-lipid conjugate and positively charged lipids. J Drug Target, 13: 73–80.
  • Willey TA, Bekos EJ, Gaver RC, Duncan GF, Tay LK, Beijnen JH, Farmen RH. (1993). High-performance liquid chromatographic procedure for the quantitative determination of paclitaxel (Taxol) in human plasma. J Chromatogr, 621: 231–238.
  • Windebank AJ, Blexrud MD, de Groen PC. (1994). Potential neurotoxicity of the solvent vehicle for cyclosporine. J Pharmacol Exp Ther, 268: 1051–1056.
  • Yang T, Cui FD, Choi MK, Cho JW, Chung SJ, Shim CK, Kim DD. (2007). Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. Int J Pharm, 338: 317–326. 10.1016/j.ijpharm.2007.02.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.