330
Views
13
CrossRef citations to date
0
Altmetric
Research Article

The effective therapy of cyclosporine A with drug delivery system in experimental colitis

, , , , , , , , & show all
Pages 458-467 | Received 22 Feb 2010, Accepted 21 Jul 2010, Published online: 30 Aug 2010

References

  • Aberra FN, Lichtenstein GR. (2005). Review article: monitoring of immunomodulators in inflammatory bowel disease. Aliment Pharmacol Ther, 21, 307–319.
  • Actis GC, Aimo G, Priolo G, Moscato D, Rizzetto M, Pagni R. (1998). Efficacy and efficiency of oral microemulsion cyclosporin versus intravenous and soft gelatin capsule cyclosporin in the treatment of severe steroid-refractory ulcerative colitis: an open-label retrospective trial. Inflamm Bowel Dis, 4, 276–279.
  • Bendjelloul F, Malý P, Mandys V, Jirkovská M, Prokesová L, Tucková L, Tlaskalová-Hogenová H. (2000). Intercellular adhesion molecule-1 (ICAM-1) deficiency protects mice against severe forms of experimentally induced colitis. Clin Exp Immunol, 119, 57–63.
  • Bradley PP, Priebat DA, Christensen RD, Rothstein G. (1982). Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol, 78, 206–209.
  • Edwards FC, Truelove SC. (1963). The course and prognosis of ulcerative colitis. Gut, 4, 299–315.
  • Egesten A, Eliasson M, Olin AI, Erjefält JS, Bjartell A, Sangfelt P, Carlson M. (2007). The proinflammatory CXC-chemokines GRO-alpha/CXCL1 and MIG/CXCL9 are concomitantly expressed in ulcerative colitis and decrease during treatment with topical corticosteroids. Int J Colorectal Dis, 22, 1421–1427.
  • Grimm MC, Pullman WE, Bennett GM, Sullivan PJ, Pavli P, Doe WF. (1995). Direct evidence of monocyte recruitment to inflammatory bowel disease mucosa. J Gastroenterol Hepatol, 10, 387–395.
  • Haneda S, Fukushima K, Funayama Y, Shibata C, Takahashi K, Tabata Y, Sasaki I. (2007). A new drug delivery system targeting ileal epithelial cells induced electrogenic sodium absorption: possible promotion of intestinal adaptation. J Gastrointest Surg, 11, 568–577.
  • Hirotani T, Lee PY, Kuwata H, Yamamoto M, Matsumoto M, Kawase I, Akira S, Takeda K. (2005). The nuclear IkappaB protein IkappaBNS selectively inhibits lipopolysaccharide-induced IL-6 production in macrophages of the colonic lamina propria. J Immunol, 174, 3650–3657.
  • Jennings C, Kusler B, Jones PP. (2009). Calcineurin inactivation leads to decreased responsiveness to LPS in macrophages and dendritic cells and protects against LPS-induced toxicity in vivo. Innate Immun, 15, 109–120.
  • Kamada N, Hisamatsu T, Honda H, Kobayashi T, Chinen H, Kitazume MT, Takayama T, Okamoto S, Koganei K, Sugita A, Kanai T, Hibi T. (2009). Human CD14+ macrophages in intestinal lamina propria exhibit potent antigen-presenting ability. J Immunol, 183, 1724–1731.
  • Kamada N, Hisamatsu T, Okamoto S, Chinen H, Kobayashi T, Sato T, Sakuraba A, Kitazume MT, Sugita A, Koganei K, Akagawa KS, Hibi T. (2008). Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-gamma axis. J Clin Invest, 118, 2269–2280.
  • Kim Y, Moon JS, Lee KS, Park SY, Cheong J, Kang HS, Lee HY, Kim HD. (2004). Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates the expression of iNOS through IKK and NF-kappaB activity in LPS-stimulated mouse peritoneal macrophages and RAW 264.7 cells. Biochem Biophys Res Commun, 314, 695–703.
  • Kornbluth A, Present DH, Lichtiger S, Hanauer S. (1997). Cyclosporin for severe ulcerative colitis: a user’s guide. Am J Gastroenterol, 92, 1424–1428.
  • Kristensen NN, Brudzewsky D, Gad M, Claesson MH. (2006). Chemokines involved in protection from colitis by CD4+CD25+ regulatory T cells. Inflamm Bowel Dis, 12, 612–618.
  • Lee H, Ahn YT, Lee JH, Huh CS, Kim DH. (2009). Evaluation of anti-colitic effect of lactic acid bacteria in mice by cDNA microarray analysis. Inflammation, 32, 379–386.
  • Lichtiger S. (2009). Treatment of choice for acute severe steroid-refractory ulcerative colitis is cyclosporine. Inflamm Bowel Dis, 15, 141–142.
  • Lichtiger S, Present DH, Kornbluth A, Gelernt I, Bauer J, Galler G, Michelassi F, Hanauer S. (1994). Cyclosporine in severe ulcerative colitis refractory to steroid therapy. N Engl J Med, 330, 1841–1845.
  • Mahida YR. (2000). The key role of macrophages in the immunopathogenesis of inflammatory bowel disease. Inflamm Bowel Dis, 6, 21–33.
  • Mihatsch MJ, Thiel G, Ryffel B. (1988). Histopathology of cyclosporine nephrotoxicity. Transplant Proc, 20, 759–771.
  • Moss AC, Peppercorn MA. (2008). Steroid-refractory severe ulcerative colitis: what are the available treatment options? Drugs, 68, 1157–1167.
  • Nakase H, Okazaki K, Tabata Y, Uose S, Ohana M, Uchida K, Matsushima Y, Kawanami C, Oshima C, Ikada Y, Chiba T. (2000). Development of an oral drug delivery system targeting immune-regulating cells in experimental inflammatory bowel disease: a new therapeutic strategy. J Pharmacol Exp Ther, 292, 15–21.
  • Nankivell BJ, Borrows RJ, Fung CL, O’Connell PJ, Chapman JR, Allen RD. (2004). Calcineurin inhibitor nephrotoxicity: longitudinal assessment by protocol histology. Transplantation, 78, 557–565.
  • Navazo L, Salata H, Morales S, Dorta MC, Pérez F, de las Casas D, Avilés J. (2001). Oral microemulsion cyclosporine in the treatment of steroid-refractory attacks of ulcerative and indeterminate colitis. Scand J Gastroenterol, 36, 610–614.
  • Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R. (1990). A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology, 98, 694–702.
  • Rugtveit J, Brandtzaeg P, Halstensen TS, Fausa O, Scott H. (1994). Increased macrophage subset in inflammatory bowel disease: apparent recruitment from peripheral blood monocytes. Gut, 35, 669–674.
  • Rugtveit J, Nilsen EM, Bakka A, Carlsen H, Brandtzaeg P, Scott H. (1997). Cytokine profiles differ in newly recruited and resident subsets of mucosal macrophages from inflammatory bowel disease. Gastroenterology, 112, 1493–1505.
  • Schenk M, Bouchon A, Seibold F, Mueller C. (2007). TREM-1–expressing intestinal macrophages crucially amplify chronic inflammation in experimental colitis and inflammatory bowel diseases. J Clin Invest, 117, 3097–3106.
  • Shibusawa Y, Negishi I, Tabata Y, Ishikawa O. (2008). Mouse model of dermal fibrosis induced by one-time injection of bleomycin-poly(L-lactic acid) microspheres. Rheumatology (Oxford), 47, 454–457.
  • Smith PD, Ochsenbauer-Jambor C, Smythies LE. (2005). Intestinal macrophages: unique effector cells of the innate immune system. Immunol Rev, 206, 149–159.
  • Smythies LE, Sellers M, Clements RH, Mosteller-Barnum M, Meng G, Benjamin WH, Orenstein JM, Smith PD. (2005). Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J Clin Invest, 115, 66–75.
  • Soriano-Izquierdo A, Gironella M, Massaguer A, Salas A, Gil F, Piqué JM, Panés J. (2004). Effect of cyclosporin A on cell adhesion molecules and leukocyte-endothelial cell interactions in experimental colitis. Inflamm Bowel Dis, 10, 789–800.
  • Strestíková P, Otová B, Filipec M, Masek K, Farghali H. (2001). Different mechanisms in inhibition of rat macrophage nitric oxide synthase expression by FK 506 and cyclosporin A. Immunopharmacol Immunotoxicol, 23, 67–74.
  • Tabata Y, Ikada Y. (1988). Macrophage phagocytosis of biodegradable microspheres composed of L-lactic acid/glycolic acid homo- and copolymers. J Biomed Mater Res, 22, 837–858.
  • Tabata Y, Ikada Y. (1990a). Drug delivery systems for antitumor activation of macrophages. Crit Rev Ther Drug Carrier Syst, 7, 121–148.
  • Tabata Y, Ikada Y. (1990b). Macrophage activation for antitumour function by muramyl dipeptide-protein conjugates. J Pharm Pharmacol, 42, 13–19.
  • Tabata Y, Ikada Y. (1990c). Phagocytosis of polymer microspheres by macrophages. Advances in Polymer Science, 94, 107–141.
  • Tabata Y, Inoue Y, Ikada Y. (1996). Size effect on systemic and mucosal immune responses induced by oral administration of biodegradable microspheres. Vaccine, 14, 1677–1685.
  • Tamaki H, Nakamura H, Nishio A, Nakase H, Ueno S, Uza N, Kido M, Inoue S, Mikami S, Asada M, Kiriya K, Kitamura H, Ohashi S, Fukui T, Kawasaki K, Matsuura M, Ishii Y, Okazaki K, Yodoi J, Chiba T. (2006). Human thioredoxin-1 ameliorates experimental murine colitis in association with suppressed macrophage inhibitory factor production. Gastroenterology, 131, 1110–1121.
  • Van Assche G, D’Haens G, Noman M, Vermeire S, Hiele M, Asnong K, Arts J, D’Hoore A, Penninckx F, Rutgeerts P. (2003). Randomized, double-blind comparison of 4 mg/kg versus 2 mg/kg intravenous cyclosporine in severe ulcerative colitis. Gastroenterology, 125, 1025–1031.
  • Watanabe N, Ikuta K, Okazaki K, Nakase H, Tabata Y, Matsuura M, Tamaki H, Kawanami C, Honjo T, Chiba T. (2003). Elimination of local macrophages in intestine prevents chronic colitis in interleukin-10-deficient mice. Dig Dis Sci, 48, 408–414.
  • Weber A, Fein F, Koch S, Dupont-Gossart AC, Mantion G, Heyd B, Carbonnel F. (2006). Treatment of ulcerative colitis refractory to steroid therapy by oral microemulsion cyclosporine (Neoral). Inflamm Bowel Dis, 12, 1131–1135.
  • Williams CM, Coleman JW. (1995). Induced expression of mRNA for IL-5, IL-6, TNF-alpha, MIP-2 and IFN-gamma in immunologically activated rat peritoneal mast cells: inhibition by dexamethasone and cyclosporin A. Immunology, 86, 244–249.
  • Williams KL, Fuller CR, Dieleman LA, DaCosta CM, Haldeman KM, Sartor RB, Lund PK. (2001). Enhanced survival and mucosal repair after dextran sodium sulfate-induced colitis in transgenic mice that overexpress growth hormone. Gastroenterology, 120, 925–937.
  • Winer J, Jung CK, Shackel I, Williams PM. (1999). Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal Biochem, 270, 41–49.
  • Wolf BA, Daft MC, Koenig JW, Flye MW, Turk JW, Scott MG. (1989). Measurement of cyclosporine concentrations in whole blood: HPLC and radioimmunoassay with a specific monoclonal antibody and 3H- or 125I-labeled ligand compared. Clin Chem, 35, 120–124.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.