1,553
Views
105
CrossRef citations to date
0
Altmetric
Review Article

Nanoparticles-mediated drug delivery approaches for cancer targeting: a review

, , , &
Pages 107-125 | Received 09 Jan 2012, Accepted 11 Jul 2012, Published online: 09 Aug 2012

References

  • Adkins JC, Spencer CM. (1998). Edrecolomab (monoclonal antibody 17-1A). Drugs, 56, 619–26; discussion 627.
  • Agarwal A, Saraf S, Asthana A, Gupta U, Gajbhiye V, Jain NK. (2008). Ligand based dendritic systems for tumor targeting. Int J Pharm, 350, 3–13.
  • Ahmadvand D, Rahbarizadeh F, Moghimi SM. (2011). Biological targeting and innovative therapeutic interventions with phage-displayed peptides and structured nucleic acids (aptamers). Curr Opin Biotechnol, 22, 832–838.
  • Ailar N, Jaleh B, Ali B, Hamid RH, Yadollah O. (2010). Bioimpacts of anti epidermal growth receptor antisense complexed with polyamidoamine dendrimers in human lung epithelial adenocarcinoma cells. J Biomedical Nanotechnol, 6, 360–369.
  • Alexiou C, Jurgons R, Schmid RJ, Bergemann C, Henke J, Erhardt W, Huenges E, Parak F. (2003). Magnetic drug targeting–biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after locoregional cancer treatment. J Drug Target, 11, 139–149.
  • Anhorn MG, Wagner S, Kreuter J, Langer K, von Briesen H. (2008). Specific targeting of HER2 overexpressing breast cancer cells with doxorubicin-loaded trastuzumab-modified human serum albumin nanoparticles. Bioconjug Chem, 19, 2321–2331.
  • Baker JR Jr. (2009). Dendrimer-based nanoparticles for cancer therapy. Hematology Am Soc Hematol Educ Program, 708–719.
  • Beloor J, Choi CS, Nam HY, Park M, Kim SH, Jackson A, Lee KY, Kim SW, Kumar P, Lee SK. (2012). Arginine-engrafted biodegradable polymer for the systemic delivery of therapeutic siRNA. Biomaterials, 33, 1640–1650.
  • Bibby DC, Talmadge JE, Dalal MK, Kurz SG, Chytil KM, Barry SE, Shand DG, Steiert M. (2005). Pharmacokinetics and biodistribution of RGD-targeted doxorubicin-loaded nanoparticles in tumor-bearing mice. Int J Pharm, 293, 281–290.
  • Brusa P, Dosio F, Coppo S, Pacchioni D, Arpicco S, Crosasso P, Cattel L. (1997). In vitro and in vivo antitumor activity of immunoconjugates prepared by linking 5-fluorouridine to antiadenocarcinoma monoclonal antibody. Farmaco, 52, 71–81.
  • Byrne JD, Betancourt T, Brannon-Peppas L. (2008). Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev, 60, 1615–1626.
  • Byzova TV, Goldman CK, Pampori N, Thomas KA, Bett A, Shattil SJ, Plow EF. (2000). A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Mol Cell, 6, 851–860.
  • Cao W, Zhou J, Wang Y, Zhu L. (2010). Synthesis and in vitro cancer cell targeting of folate-functionalized biodegradable amphiphilic dendrimer-like star polymers. Biomacromolecules, 11, 3680–3687.
  • Cao X, Yang M, Wei RC, Zeng Y, Gu JF, Huang WD, Yang DQ, Li HL, Ding M, Wei N, Zhang KJ, Xu B, Liu XR, Qian QJ, Liu XY. (2011). Cancer targeting Gene-Viro-Therapy of liver carcinoma by dual-regulated oncolytic adenovirus armed with TRAIL gene. Gene Ther, 18, 765–777.
  • Carpin LB, Bickford LR, Agollah G, Yu TK, Schiff R, Li Y, Drezek RA. (2011). Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells. Breast Cancer Res Treat, 125, 27–34.
  • Chang Y, Meng X, Zhao Y, Li K, Zhao B, Zhu M, Li Y, Chen X, Wang J. (2011). Novel water-soluble and pH-responsive anticancer drug nanocarriers: doxorubicin-PAMAM dendrimer conjugates attached to superparamagnetic iron oxide nanoparticles (IONPs). J Colloid Interface Sci, 363, 403–409.
  • Chang JE, Shim WS, Yang SG, Kwak EY, Chong S, Kim DD, Chung SJ, Shim CK. (2012). Liver cancer targeting of Doxorubicin with reduced distribution to the heart using hematoporphyrin-modified albumin nanoparticles in rats. Pharm Res, 29, 795–805.
  • Chawla JS, Amiji MM. (2002). Biodegradable poly(epsilon -caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int J Pharm, 249, 127–138.
  • Chen W, Jin MJ, Gao ZG, Wang LP, Piao HF. (2011). [Preparation and in vitro evaluation of pH-sensitive TAT peptide conjugated micelles]. Yao Xue Xue Bao, 46, 599–604.
  • Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, Levy-Nissenbaum E, Radovic-Moreno AF, Langer R, Farokhzad OC. (2007). Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials, 28, 869–876.
  • Cho K, Wang X, Nie S, Chen ZG, Shin DM. (2008). Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res, 14, 1310–1316.
  • Choi CH, Alabi CA, Webster P, Davis ME. (2010). Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc Natl Acad Sci USA, 107, 1235–1240.
  • Choi WI, Kim JY, Kang C, Byeon CC, Kim YH, Tae G. (2011). Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano, 5, 1995–2003.
  • Choi YS, Mecke A, Orr BG, Holl MMB, JBaker R. (2004). DNA directed synthesis of generation of 7 and 5 PAMAM dendrimers nanocluster. Nano Letters, 4, 391–397.
  • Chrysantha F, Muller RH. (1998). Spray-drying of solid lipid nanoparticles. Eur J Pharm Biopharm, 46, 145–151.
  • Ciofani G, Riggio C, Raffa V, Menciassi A, Cuschieri A. (2009). A bi-modal approach against cancer: magnetic alginate nanoparticles for combined chemotherapy and hyperthermia. Med Hypotheses, 73, 80–82.
  • Cole AJ, David AE, Wang J, Galbán CJ, Yang VC. (2011). Magnetic brain tumor targeting and biodistribution of long-circulating PEG-modified, cross-linked starch-coated iron oxide nanoparticles. Biomaterials, 32, 6291–6301.
  • Corsi F, Fiandra L, De Palma C, Colombo M, Mazzucchelli S, Verderio P, Allevi R, Tosoni A, Nebuloni M, Clementi E, Prosperi D. (2011). HER2 expression in breast cancer cells is downregulated upon active targeting by antibody-engineered multifunctional nanoparticles in mice. ACS Nano, 5, 6383–6393.
  • Cummings J, McArdle CS. (1986). Studies on the in vivo disposition of adriamycin in human tumours which exhibit different responses to the drug. Br J Cancer, 53, 835–838.
  • Danhier F, Feron O, Préat V. (2010). To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release, 148, 135–146.
  • David QG, Allémann E, Doelker E, Fessi H. (1998). Preparation and characterization of nanocapsules from preformed polymers by a new process based on emulsification-diffusion technique. Pharm Res, 15, 1056–1062.
  • DeNardo GL, Natarajan A, Hok S, Mirick G, DeNardo SJ, Corzett M, Sysko V, Lehmann J, Beckett L, Balhorn R. (2008). Nanomolecular HLA-DR10 antibody mimics: A potent system for molecular targeted therapy and imaging. Cancer Biother Radiopharm, 23, 783–796.
  • Dharap SS, Wang Y, Chandna P, Khandare JJ, Qiu B, Gunaseelan S, Sinko PJ, Stein S, Farmanfarmaian A, Minko T. (2005). Tumor-specific targeting of an anticancer drug delivery system by LHRH peptide. Proc Natl Acad Sci USA, 102, 12962–12967.
  • Dienstmann R, Felip E. (2011). Necitumumab in the treatment of advanced non-small cell lung cancer: translation from preclinical to clinical development. Expert Opin Biol Ther, 11, 1223–1231.
  • Dillman RO, Johnson DE, Ogden J, Beidler D. (1989). Significance of antigen, drug, and tumor cell targets in the preclinical evaluation of doxorubicin, daunorubicin, methotrexate, and mitomycin-C monoclonal antibody immunoconjugates. Mol Biother, 1, 250–255.
  • Doijad RC, Manvi FV, Godhwani DM, Joseph R, Deshmukh NV. (2008). Formulation and targeting efficiency of Cisplatin engineered solid lipid nanoparticles. Indian J Pharm Sci, 70, 203–207.
  • Dongyun C, Xuewei X, Hongwei G, Qingfeng X, Jianfeng G, Yonggang L, Najun L, Jianmei L. (2011). pH-responsive polymeric carrier encapsulated magnetic nanoparticles for cancer targeted imaging and delivery. J Mater Chem, 21, 12682–12690.
  • Dreaden EC, Mwakwari SC, Sodji QH, Oyelere AK, El-Sayed MA. (2009). Tamoxifen-poly(ethylene glycol)-thiol gold nanoparticle conjugates: enhanced potency and selective delivery for breast cancer treatment. Bioconjug Chem, 20, 2247–2253.
  • Du YZ, Cai LL, Li J, Zhao MD, Chen FY, Yuan H, Hu FQ. (2011). Receptor-mediated gene delivery by folic acid-modified stearic acid-grafted chitosan micelles. Int J Nanomedicine, 6, 1559–1568.
  • Duan C, Zhang D, Wang F, Zheng D, Jia L, Feng F, Liu Y, Wang Y, Tian K, Wang F, Zhang Q. (2011). Chitosan-g-poly(N-isopropylacrylamide) based nanogels for tumor extracellular targeting. Int J Pharm, 409, 252–259.
  • Duncan R. (2006). Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer, 6, 688–701.
  • Elsherbini AA, Saber M, Aggag M, El-Shahawy A, Shokier HA. (2011). Laser and radiofrequency-induced hyperthermia treatment via gold-coated magnetic nanocomposites. Int J Nanomedicine, 6, 2155–2165.
  • Etame AB, Smith CA, Chan WC, Rutka JT. (2011). Design and potential application of PEGylated gold nanoparticles with size-dependent permeation through brain microvasculature. Nanomedicine, 7, 992–1000.
  • Fadel M, Kassab K, Fadeel DA. (2010). Zinc phthalocyanine-loaded PLGA biodegradable nanoparticles for photodynamic therapy in tumor-bearing mice. Lasers Med Sci, 25, 283–272.
  • Li F, Hong W, Hui Z, Fei L, Tie-Hong Y, Chun-Hu G, Qian Y. (2008). Novel super pH-sensitive nanoparticles responsive to tumor extracellular pH. Carbohydrate Pol, 73, 390–400.
  • Farokhzad OC, Jon S, Khademhosseini A, Tran TN, Lavan DA, Langer R. (2004). Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res, 64, 7668–7672.
  • Farokhzad OC, Karp JM, Langer R. (2006). Nanoparticle-aptamer bioconjugates for cancer targeting. Expert Opin Drug Deliv, 3, 311–324.
  • Felber AE, Castagner B, Elsabahy M, Deleavey GF, Damha MJ, Leroux JC. (2011). siRNA nanocarriers based on methacrylic acid copolymers. J Control Release, 152, 159–167.
  • Ferreira CSM, Missailidis S. (2007). Aptamer-based therapeutics and their potential in radiopharmaceutical design. Braz Arch Biol Technol, 50, 63–76.
  • Frey K, Zivanovic A, Schwager K, Neri D. (2011). Antibody-based targeting of interferon-alpha to the tumor neovasculature: a critical evaluation. Integr Biol (Camb), 3, 468–478.
  • Gautier J, Munnier E, Paillard A, Hervé K, Douziech-Eyrolles L, Soucé M, Dubois P, Chourpa I. (2012). A pharmaceutical study of doxorubicin-loaded PEGylated nanoparticles for magnetic drug targeting. Int J Pharm, 423, 16–25.
  • Geng F, Song K, Xing JZ, Yuan C, Yan S, Yang Q, Chen J, Kong B. (2011). Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer. Nanotechnology, 22, 285101.
  • Gong JL, Wang SM, Hu XG, Cao MM, Zhang JR. (2008). [Synthesis and characterization of folic acid-conjugated chitosan nanoparticles as a tumor-targeted drug carrier]. Nan Fang Yi Ke Da Xue Xue Bao, 28, 2183–2186.
  • Gong J, Chen M, Zheng Y, Wang S, Wang Y. (2012). Polymeric micelles drug delivery system in oncology. J Control Release, 159, 312–323.
  • Gou M, Wei X, Men K, Wang B, Luo F, Zhao X, Wei Y, Qian Z. (2011). PCL/PEG copolymeric nanoparticles: potential nanoplatforms for anticancer agent delivery. Curr Drug Targets, 12, 1131–1150.
  • Goutayer M, Dufort S, Josserand V, Royère A, Heinrich E, Vinet F, Bibette J, Coll JL, Texier I. (2010). Tumor targeting of functionalized lipid nanoparticles: assessment by in vivo fluorescence imaging. Eur J Pharm Biopharm, 75, 137–147.
  • Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. (1994). Biodegradable long-circulating polymeric nanospheres. Science, 263, 1600–1603.
  • Gutheil JC, Campbell TN, Pierce PR, Watkins JD, Huse WD, Bodkin DJ, Cheresh DA. (2000). Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin alphavbeta3. Clin Cancer Res, 6, 3056–3061.
  • Hainfeld JF, O’Connor MJ, Dilmanian FA, Slatkin DN, Adams DJ, Smilowitz HM. (2011). Micro-CT enables microlocalisation and quantification of Her2-targeted gold nanoparticles within tumour regions. Br J Radiol, 84, 526–533.
  • Han L, Huang R, Li J, Liu S, Huang S, Jiang C. (2011). Plasmid pORF-hTRAIL and doxorubicin co-delivery targeting to tumor using peptide-conjugated polyamidoamine dendrimer. Biomaterials, 32, 1242–1252.
  • Hicke BJ, Stephens AW, Gould T, Chang YF, Lynott CK, Heil J, Borkowski S, Hilger CS, Cook G, Warren S, Schmidt PG. (2006). Tumor targeting by an aptamer. J Nucl Med, 47, 668–678.
  • Hilselberger Kanitz M, Mastro JM, Moore RE, Starling JJ. (1994). In vivo expression of P-glycoprotein in a human colon carcinoma xenograft is modulated by therapy with free and monoclonal antibody-conjugated vinca alkaloids. Anticancer Res, 14, 857–868.
  • Hu Jack CM, Aryal S, Zhang L. (2010). Nanoparticle-assisted combination therapies for effective cancer treatment. Therapeutic Del, 1, 323–334.
  • Hu Jack CM, Aryal S, Zhang L. (2012). Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochem Pharmacol, 83, 1104–1111.
  • Huang M, Wu W, Qian J, Wan DJ, Wei XL, Zhu JH. (2005). Body distribution and in situ evading of phagocytic uptake by macrophages of long-circulating poly (ethylene glycol) cyanoacrylate-co-n-hexadecyl cyanoacrylate nanoparticles. Acta Pharmacol Sin, 26, 1512–1518.
  • Huang RK, Steinmetz NF, Fu CY, Manchester M, Johnson JE. (2011). Transferrin-mediated targeting of bacteriophage HK97 nanoparticles into tumor cells. Nanomedicine (Lond), 6, 55–68.
  • Huwyler J, Drewe J, Krähenbuhl S. (2008). Tumor targeting using liposomal antineoplastic drugs. Int J Nanomedicine, 3, 21–29.
  • Hynes RO, Bader BL, Hodivala-Dilke K. (1999). Integrins in vascular development. Braz J Med Biol Res, 32, 501–510.
  • Jain SK, Chaurasiya A, Gupta Y, Jain A, Dagur P, Joshi B, Katoch VM. (2008). Development and characterization of 5-FU bearing ferritin appended solid lipid nanoparticles for tumour targeting. J Microencapsul, 25, 289–297.
  • Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ. (2006). Cancer statistics, 2006. CA Cancer J Clin, 56, 106–130.
  • Jeong YI, Kim do H, Chung CW, Yoo JJ, Choi KH, Kim CH, Ha SH, Kang DH. (2011). Doxorubicin-incorporated polymeric micelles composed of dextran-b-poly(DL-lactide-co-glycolide) copolymer. Int J Nanomedicine, 6, 1415–1427.
  • Jiao PF, Zhou HY, Chen LX, Yan B. (2011). Cancer-targeting multifunctionalized gold nanoparticles in imaging and therapy. Curr Med Chem, 18, 2086–2102.
  • Jin Y, Liu S, Yu B, Golan S, Koh CG, Yang J, Huynh L, Yang X, Pang J, Muthusamy N, Chan KK, Byrd JC, Talmon Y, Lee LJ, Lee RJ, Marcucci G. (2010). Targeted delivery of antisense oligodeoxynucleotide by transferrin conjugated pH-sensitive lipopolyplex nanoparticles: a novel oligonucleotide-based therapeutic strategy in acute myeloid leukemia. Mol Pharm, 7, 196–206.
  • Junping W, Takayama K, Nagai T, Maitani Y. (2003). Pharmacokinetics and antitumor effects of vincristine carried by microemulsions composed of PEG-lipid, oleic acid, vitamin E and cholesterol. Int J Pharm, 251, 13–21.
  • Kashanian S, Azandaryani AH, Derakhshandeh K. (2011). New surface-modified solid lipid nanoparticles using N-glutaryl phosphatidylethanolamine as the outer shell. Int J Nanomedicine, 6, 2393–2401.
  • Kaul G, Amiji M. (2004). Biodistribution and targeting potential of poly(ethylene glycol)-modified gelatin nanoparticles in subcutaneous murine tumor model. J Drug Target, 12, 585–591.
  • Kaul G, Amiji M. (2002). Long-circulating poly(ethylene glycol)-modified gelatin nanoparticles for intracellular delivery. Pharm Res, 19, 1061–1067.
  • Kedar U, Phutane P, Shidhaye S, Kadam V. (2010). Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine, 6, 714–729.
  • Khan JA, Kudgus RA, Szabolcs A, Dutta S, Wang E, Cao S, Curran GL, Shah V, Curley S, Mukhopadhyay D, Robertson JD, Bhattacharya R, Mukherjee P. (2011). Designing nanoconjugates to effectively target pancreatic cancer cells in vitro and in vivo. PLoS ONE, 6, e20347.
  • Kim JK, Choi KJ, Lee M, Jo MH, Kim S. (2012). Molecular imaging of a cancer-targeting theragnostics probe using a nucleolin aptamer- and microRNA-221 molecular beacon-conjugated nanoparticle. Biomaterials, 33, 207–217.
  • Kim S, Park K. (2010). Chapter 19. Polymer micelles for drug delivery. Targeted delivery of small and macromolecular drugs. Boca Raton, FL, USA: CRC Press (Taylor and Francis Group), 513–543.
  • Kontermann RE. (2006). Immunoliposomes for cancer therapy. Curr Opin Mol Ther, 8, 39–45.
  • Krishna R, Mayer LD. (1999). The use of liposomal anticancer agents to determine the roles of drug pharmacodistribution and P-glycoprotein (PGP) blockade in overcoming multidrug resistance (MDR). Anticancer Res, 19, 2885–2891.
  • Kukowska-Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ, Thomas TP, Balogh LP, Khan MK, Baker JR Jr. (2005). Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res, 65, 5317–5324.
  • Kularatne SA, Low PS. (2010). Targeting of nanoparticles: folate receptor. Methods Mol Biol, 624, 249–265.
  • Kumar Majeti NVR. (2000). Nano and microparticles as controlled drug delivery devices. J Pharm Pharmaceut Sci, 3, 234–258.
  • Landen CN, Kim TJ, Lin YG, Merritt WM, Kamat AA, Han LZ, Spannuth WA, Nick AM, Jennnings NB, Kinch MS, Tice D, Sood AK. (2008). Tumor-selective response to antibody-mediated targeting of αvβ3 integrin in ovarian cancer, 10, 1259–1267.
  • Lee SW, Chang DH, Shim MS, Kim BO, Kim SO, Seo MH. (2007). Ionically fixed polymeric nanoparticles as a novel drug carrier. Pharm Res, 24, 1508–1516.
  • Li D, Ping Y, Xu F, Yu H, Pan H, Huang H, Wang Q, Tang G, Li J. (2010). Construction of a star-shaped copolymer as a vector for FGF receptor-mediated gene delivery in vitro and in vivo. Biomacromolecules, 11, 2221–2229.
  • Li X, Du X, Huo T, Liu X, Zhang S, Yuan F. (2009). Specific targeting of breast tumor by octreotide-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 3.0-Tesla magnetic resonance scanner. Acta Radiol, 50, 583–594.
  • Li X, Zhou H, Yang L, Du G, Pai-Panandiker AS, Huang X, Yan B. (2011). Enhancement of cell recognition in vitro by dual-ligand cancer targeting gold nanoparticles. Biomaterials, 32, 2540–2545.
  • Liggins RT, Burt HM. (2002). Polyether-polyester diblock copolymers for the preparation of paclitaxel loaded polymeric micelle formulations. Adv Drug Deliv Rev, 54, 191–202.
  • Lin Y, Alexandridis P. (2000). Controlled Drug Delivery. Controlled release from ordered microstructures formed by poloxamer block copolymers. 364–374.
  • Link BK, Weiner GJ. (1998). Monoclonal antibodies in the treatment of human B-cell malignancies. Leuk Lymphoma, 31, 237–249.
  • Liu C, Tadayoni BM, Bourret LA, Mattocks KM, Derr SM, Widdison WC, Kedersha NL, Ariniello PD, Goldmacher VS, Lambert JM, Blatter WA, Chari RV. (1996). Eradication of large colon tumor xenografts by targeted delivery of maytansiniods. Proc Natl Aacad Sci, 93, 8619–8623.
  • Liu P, Li Z, Zhu M, Sun Y, Li Y, Wang H, Duan Y. (2010). Preparation of EGFR monoclonal antibody conjugated nanoparticles and targeting to hepatocellular carcinoma. J Mater Sci Mater Med, 21, 551–556.
  • Liu G, Choi KY, Bhirde A, Swierczewska M, Yin J, Lee SW, Park JH, Hong JI, Xie J, Niu G, Kiesewetter DO, Lee S, Chen X. (2012). Sticky nanoparticles: a platform for siRNA delivery by a bis(zinc(II) dipicolylamine)-functionalized, self-assembled nanoconjugate. Angew Chem Int Ed Engl, 51, 445–449.
  • Loo C, Lin A, Hirsch L, Lee MH, Barton J, Halas N, West J, Drezek R. (2004). Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat, 3, 33–40.
  • Löw K, Wacker M, Wagner S, Langer K, von Briesen H. (2011). Targeted human serum albumin nanoparticles for specific uptake in EGFR-Expressing colon carcinoma cells. Nanomedicine, 7, 454–463.
  • Lu RM, Chang YL, Chen MS, Wu HC. (2011). Single chain anti-c-Met antibody conjugated nanoparticles for in vivo tumor-targeted imaging and drug delivery. Biomaterials, 32, 3265–3274.
  • Lu Y, Low PS. (2002). Folate targeting of haptens to cancer cell surfaces mediates immunotherapy of syngeneic murine tumors. Cancer Immunol Immunother, 51, 153–162.
  • Ma M, Yuan ZF, Chen XJ, Li F, Zhuo RX. (2012). A facile preparation of novel multifunctional vectors by non-covalent bonds for co-delivery of doxorubicin and gene. Acta Biomater, 8, 599–607.
  • MacEwan SR, Callahan DJ, Chilkoti A. (2010). Stimulus-responsive macromolecules and nanoparticles for cancer drug delivery. Nanomedicine (Lond), 5, 793–806.
  • Mackiewicz N, Gravel E, Garofalakis A, Ogier J, John J, Dupont DM, Gombert K, Tavitian B, Doris E, Ducongé F. (2011). Tumor-targeted polydiacetylene micelles for in vivo imaging and drug delivery. Small, 7, 2786–2792.
  • MacKinnon N, Guérin G, Liu B, Gradinaru CC, Rubinstein JL, Macdonald PM. (2010). Triggered instability of liposomes bound to hydrophobically modified core-shell PNIPAM hydrogel beads. Langmuir, 26, 1081–1089.
  • Majoros, I, Becker A, Thomas T, Shukla R, Shi X. (2008). Dendrimers based nanomedicine. In: Majoros IJ, Baker JR. Dendrimer conjugate for cancer treatment. Boca Raton, FL, USA:Pan Stanford publishing Pte. Ltd, 111.
  • Malhotra M, Kulamarva A, Sebak S, Paul A, Bhathena J, Mirzaei M, Prakash S. (2009). Ultrafine chitosan nanoparticles as an efficient nucleic acid delivery system targeting neuronal cells. Drug Dev Ind Pharm, 35, 719–726.
  • Mallikaratchy PR, Ruggiero A, Gardner JR, Kuryavyi V, Maguire WF, Heaney ML, McDevitt MR, Patel DJ, Scheinberg DA. (2011). A multivalent DNA aptamer specific for the B-cell receptor on human lymphoma and leukemia. Nucleic Acids Res, 39, 2458–2469.
  • Maloney DG, Donovan K, Hamblin TJ. (1999). Antibody therapy for treatment of multiple myeloma. Semin Hematol, 36, 30–33.
  • Marcucci F, Lefoulon F. (2004). Active targeting with particulate drug carriers in tumor therapy: fundamentals and recent progress. Drug Discov Today, 9, 219–228.
  • Marin A, Sun H, Husseini GA, Pitt WG, Christensen DA, Rapoport NY. (2002). Drug delivery in pluronic micelles: effect of high-frequency ultrasound on drug release from micelles and intracellular uptake. J Control Release, 84, 39–47.
  • Mauro F. (2005). Cancer nanotechnology: oppurtunities and challenges. Nat Rev Cancer, 5, 161–171.
  • McNeil SE. (2005). Nanotechnology for the biologist. J Leukoc Biol, 78, 585–594.
  • Medina SH, El-Sayed ME. (2009). Dendrimers as carriers for delivery of chemotherapeutic agents. Chem Rev, 109, 3141–3157.
  • Medina SH, Tekumalla V, Chevliakov MV, Shewach DS, Ensminger WD, El-Sayed ME. (2011). N-acetylgalactosamine-functionalized dendrimers as hepatic cancer cell-targeted carriers. Biomaterials, 32, 4118–4129.
  • Mern DS, Hasskarl J, Burwinkel B. (2010). Inhibition of Id proteins by a peptide aptamer induces cell-cycle arrest and apoptosis in ovarian cancer cells. Br J Cancer, 103, 1237–1244.
  • Mitra AK, Ghosh MK. (1990). Drug-immunoglobulin conjugate as targeted therapeutic systems in Targeted Therapeutic Systems. In: Tyle P, Ram BP, eds. New York: Marcel Dekker, Inc, 147–187.
  • Miyano T, Wijagkanalan W, Kawakami S, Yamashita F, Hashida M. (2010). Anionic amino acid dendrimer-trastuzumab conjugates for specific internalization in HER2-positive cancer cells. Mol Pharm, 7, 1318–1327.
  • Moghimi SM, Hunter AC, Murray JC. (2001). Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev, 53, 283–318.
  • Muller RH, Mehnert W, Lucks JS, Schwarz C, Muhlen AZ, Weyhers H, Freitas C, Ruhl D. (1995). Solid lipid nanoparticles (SLN)- an alternative colloidal drug carrier system for controlled drug delivery. Eur J Biopharm, 41, 62–69.
  • Müller RH, Maassen S, Weyhers H, Mehnert W. (1996). Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. J Drug Target, 4, 161–170.
  • Muller RH, Maassen H, Schwarz C, Mehnert W. (1997). Solid lipid nanoparticles (SLN) as potential carrier for human use: interaction with human granulocytes. J Control Release, 47, 261–269.
  • Na K, Lee ES, Bae YH. (2003). Adriamycin loaded pullulan acetate/sulfonamide conjugate nanoparticles responding to tumor pH: pH-dependent cell interaction, internalization and cytotoxicity in vitro. J Control Release, 87, 3–13.
  • Naito K, Takeshita A, Shigeno K, Nakamura S, Fujisawa S, Shinjo K, Yoshida H, Ohnishi K, Mori M, Terakawa S, Ohno R. (2000). Calicheamicin-conjugated humanized anti-CD33 monoclonal antibody (gemtuzumab zogamicin, CMA-676) shows cytocidal effect on CD33-positive leukemia cell lines, but is inactive on P-glycoprotein-expressing sublines. Leukemia, 14, 1436–1443.
  • Neri D, Bicknell R. (2005). Tumour vascular targeting. Nat Rev Cancer, 5, 436–446.
  • Nomura T, Saikawa A, Morita S, Sakaeda Kakutani T, Yamashita F, Honda K, Takakura Y, Hashida M. (1998). Pharmacokinetic characteristics and therapeutic effects of mitomycin C-dextran conjugates after intratumoural injection. J Control Release, 52, 239–252.
  • Okuda T, Kawakami S, Akimoto N, Niidome T, Yamashita F, Hashida M. (2006). PEGylated lysine dendrimers for tumor-selective targeting after intravenous injection in tumor-bearing mice. J Control Release, 116, 330–336.
  • Ortner A, Wernig K, Kaisler R, Edetsberger M, Hajos F, Köhler G, Mosgoeller W, Zimmer A. (2010). VPAC receptor mediated tumor cell targeting by protamine based nanoparticles. J Drug Target, 18, 457–467.
  • Otsuka H, Nagasaki Y, Kataoka K. (2003). PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev, 55, 403–419.
  • Pan J, Feng SS. (2009). Targeting and imaging cancer cells by folate-decorated, quantum dots (QDs)- loaded nanoparticles of biodegradable polymers. Biomaterials, 30, 1176–1183.
  • Pandita D, Ahuja A, Lather V, Dutta T, Velpandian T, Khar RK. (2011). Development, characterization and in vitro assessement of stearylamine-based lipid nanoparticles of paclitaxel. Pharmazie, 66, 171–177.
  • Pankhurst QA, Connolly J, Jones SK, Dobson J. (2003). Topical review-application of magnetic nanoparticles in biomedicine. J Phy D: Appl Phys, 36, R167–181.
  • Pasqualini R, Koivunen E, Ruoslahti E. (1997). Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol, 15, 542–546.
  • Passarella RJ, Spratt DE, van der Ende AE, Phillips JG, Wu H, Sathiyakumar V, Zhou L, Hallahan DE, Harth E, Diaz R. (2010). Targeted nanoparticles that deliver a sustained, specific release of Paclitaxel to irradiated tumors. Cancer Res, 70, 4550–4559.
  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. (2007). Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol, 2, 751–760.
  • Peng CL, Yang LY, Luo TY, Lai PS, Yang SJ, Lin WJ, Shieh MJ. (2010). Development of pH sensitive 2-(diisopropylamino)ethyl methacrylate based nanoparticles for photodynamic therapy. Nanotechnology, 21, 155103.
  • Peracchia MT, Vauthier C, Puisieux F, Couvreur P. (1997). Development of sterically stabilized poly(isobutyl 2-cyanoacrylate) nanoparticles by chemical coupling of poly(ethylene glycol). J Biomed Mater Res, 34, 317–326.
  • Pissuwan D, Niidome T, Cortie MB. (2011). The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release, 149, 65–71.
  • Poon Z, Chang D, Zhao X, Hammond PT. (2011). Layer-by-layer nanoparticles with a pH-sheddable layer for in vivo targeting of tumor hypoxia. ACS Nano, 5, 4284–4292.
  • Prasad PN, Liebow C, Levy L, Berqey EJ. (2000). Magnetic nanoparticles for selective therapy. US Patent 6514481.
  • Puglisi G, Giammona G, Fresta M, Carlisi B, Micali N, Villari A. (1993). Evaluation of polyalkylcyanoacrylate nanoparticles as a potential drug carrier: preparation, morphological characterization and loading capacity. J Microencapsul, 10, 353–366.
  • Reddy LH, Sharma RK, Chuttani K, Mishra AK, Murthy RS. (2005). Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in Dalton’s lymphoma tumor bearing mice. J Control Release, 105, 185–198.
  • Ren WH, Chang J, Yan CH, Qian XM, Long LX, He B, Yuan XB, Kang CS, Betbeder D, Sheng J, Pu PY. (2010). Development of transferrin functionalized poly(ethylene glycol)/poly(lactic acid) amphiphilic block copolymeric micelles as a potential delivery system targeting brain glioma. J Mater Sci Mater Med, 21, 2673–2681.
  • Rérole AL, Gobbo J, De Thonel A, Schmitt E, Pais de Barros JP, Hammann A, Lanneau D, Fourmaux E, Deminov O, Micheau O, Lagrost L, Colas P, Kroemer G, Garrido C. (2011). Peptides and aptamers targeting HSP70: a novel approach for anticancer chemotherapy. Cancer Res, 71, 484–495.
  • Reuveni T, Motiei M, Romman Z, Popovtzer A, Popovtzer R. (2011). Targeted gold nanoparticles enable molecular CT imaging of cancer: an in vivo study. Int J Nanomedicine, 6, 2859–2864.
  • Rosenblum MG, Marks JW, Cheung LH. (1999). Comparative cytotoxicity and pharmacokinetics of antimelanoma immunotoxins containing either natural or recombinant gelonin. Cancer Chemother Pharmacol, 44, 343–348.
  • Rothdiener M, Beuttler J, Messerschmidt SK, Kontermann RE. (2010). Antibody targeting of nanoparticles to tumor-specific receptors: immunoliposomes. Methods Mol Biol, 624, 295–308.
  • Ruiz-Hernández E, Baeza A, Vallet-Regí M. (2011). Smart drug delivery through DNA/magnetic nanoparticle gates. ACS Nano, 5, 1259–1266.
  • Ruoslahti E, Bhatia SN, Sailor MJ. (2010). Targeting of drugs and nanoparticles to tumors. J Cell Biol, 188, 759–768.
  • Sahu SK, Maiti S, Maiti TK, Ghosh SK, Pramanik P. (2011). Hydrophobically modified carboxymethyl chitosan nanoparticles targeted delivery of paclitaxel. J Drug Target, 19, 104–113.
  • Sailaja AK, Amareshwar P, Chakravarty P. (2011). Formulation of solid lipid nanoparticles and their applications. Current Pharma Res, 1, 197–203.
  • Salerno M, Cenni E, Fotia C, Avnet S, Granchi D, Castelli F, Micieli D, Pignatello R, Capulli M, Rucci N, Angelucci A, Del Fattore A, Teti A, Zini N, Giunti A, Baldini N. (2010). Bone-targeted doxorubicin-loaded nanoparticles as a tool for the treatment of skeletal metastases. Curr Cancer Drug Targets, 10, 649–659.
  • Santander-Ortega MJ, Jódar-Reyes AB, Csaba N, Bastos-González D, Ortega-Vinuesa JL. (2006). Colloidal stability of pluronic F68-coated PLGA nanoparticles: a variety of stabilisation mechanisms. J Colloid Interface Sci, 302, 522–529.
  • Sarmah JK, Mahanta R, Bhattacharjee SK, Mahanta R, Biswas A. (2011). Controlled release of tamoxifen citrate encapsulated in cross-linked guar gum nanoparticles. Int J Biol Macromol, 49, 390–396.
  • Schmolling J, Reinsberg J, Wagner U, Krebs D. (1997). Anti-TAG-72 antibody B72.3–immunological and clinical effects in ovarian carcinoma. Hybridoma, 16, 53–58.
  • Schrama D, Reisfeld RA, Becker JC. (2006). Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov, 5, 147–159.
  • Seong H, An TK, Khang G, Choi SU, Lee CO, Lee HB. (2003). BCNU-loaded poly(D, L-lactide-co-glycolide) wafer and antitumor activity against XF-498 human CNS tumor cells in vitro. Int J Pharm, 251, 1–12.
  • Seymour LW, Ferry DR, Anderson D, Hesslewood S, Julyan PJ, Poyner R, Doran J, Young AM, Burtles S, Kerr DJ; Cancer Research Campaign Phase I/II Clinical Trials committee. (2002). Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. J Clin Oncol, 20, 1668–1676.
  • Shan L.. (2011). Vascular endothelial growth factor A isoform 121-gelonin fusion protein-conjugated manganese ferrite nanoparticles. Molecular Imaging and Contrast Agent Database (MICAD), 2004–2011. Bethesda, MD, USA: National Center for Biotechnology Information (US).
  • Shenoy DB, Amiji MM. (2005). Poly(ethylene oxide)-modified poly(caprolactone) nanopoarticles for targeted delivery of tamoxifen in breast cancer. Int J Pharm, 293, 261–270.
  • Shi X, Wang SH, Lee I, Shen M, Baker JR Jr. (2009). Comparison of the internalization of targeted dendrimers and dendrimer-entrapped goldnanoparticles into cancer cells. Biopolymers, 91, 936–942.
  • Shigdar S, Lin J, Yu Y, Pastuovic M, Wei M, Duan W. (2011). RNA aptamer against a cancer stem cell marker epithelial cell adhesion molecule. Cancer Sci, 102, 991–998.
  • Shukla R, Thomas TP, Peters JL, Desai AM, Kukowska-Latallo J, Patri AK, Kotlyar A, Baker JR Jr. (2006). HER2 specific tumor targeting with dendrimer conjugated anti-HER2 mAb. Bioconjug Chem, 17, 1109–1115.
  • Siekmann B, Westesen K. (1998). In: Benita S, ed. Submicron emulsions in drug targeting and delivery. The Netherlands: Horwood Acedemic Publishers, 205–218.
  • Singh P, Gupta U, Asthana A, Jain NK. (2008). Folate and folate-PEG-PAMAM dendrimers: synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjug Chem, 19, 2239–2252.
  • Soeda H, Shimodaira H, Ishioka C. (2011). [Predictive biomarkers of anti-EGFR monoclonal anti-body in colorectal cancer]. Gan To Kagaku Ryoho, 38, 1079–1083.
  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. (2001). Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release, 70, 1–20.
  • Steinhauser I, Spänkuch B, Strebhardt K, Langer K. (2006). Trastuzumab-modified nanoparticles: optimisation of preparation and uptake in cancer cells. Biomaterials, 27, 4975–4983.
  • Stella B, Marsaud V, Arpicco S, Géraud G, Cattel L, Couvreur P, Renoir JM. (2007). Biological characterization of folic acid-conjugated poly(H2NPEGCA-co-HDCA) nanoparticles in cellular models. J Drug Target, 15, 146–153.
  • Sternberg N, Georgieva R, Duft K, Bäumler H. (2012). Surface-modified loaded human red blood cells for targeting and delivery of drugs. J Microencapsul, 29, 9–20.
  • Stubbs M, McSheehy PM, Griffiths JR, Bashford CL. (2000). Causes and consequences of tumour acidity and implications for treatment. Mol Med Today, 6, 15–19.
  • Sudimack J, Lee RJ. (2000). Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev, 41, 147–162.
  • Sung HW, Hsu HK, Tu H. (2006). Nanoparticles for targeting hepatoma cells. US2006115537A1.
  • Sup LH, Kwangmeyung K, Hyun JB, Tae MH, Youngro B. (2004). Stability of poly(Acrylic Acid)-grafted phospholipid liposomes in gastrointestinal conditions. Drug Development Res, 61, 13–18.
  • Taghdisi SM, Lavaee P, Ramezani M, Abnous K. (2011). Reversible targeting and controlled release delivery of daunorubicin to cancer cells by aptamer-wrapped carbon nanotubes. Eur J Pharm Biopharm, 77, 200–206.
  • Takafuji Y, Jo JI, Tabata Y. (2010). Simple PEG Modification of DNA Aptamer Based on Copper Ion Coordination for Tumor Targeting. J Biomater Sci Polym Ed (In Press).
  • Tang QS, Chen DZ, Xue WQ, Xiang JY, Gong YC, Zhang L, Guo CQ. (2011). Preparation and biodistribution of 188Re-labeled folate conjugated human serum albumin magnetic cisplatin nanoparticles (188Re-folate-CDDP/HSA MNPs) in vivo. Int J Nanomedicine, 6, 3077–3085.
  • Tannock IF, Rotin D. (1989). Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res, 49, 4373–4384.
  • Torchilin VP. (2000). Drug targeting. Eur J Pharm Sci, 11, S81–91.
  • Torchilin VP. (2010). Passive and active drug targeting: drug delivery to tumors as an example. Handb Exp Pharmacol, 197, 3–53.
  • Van de Broek B, Devoogdt N, D’Hollander A, Gijs HL, Jans K, Lagae L, Muyldermans S, Maes G, Borghs G. (2011). Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano, 5, 4319–4328.
  • Vauthier C, Dubernet C, Chauvierre C, Brigger I, Couvreur P. (2003). Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. J Control Release, 93, 151–160.
  • Wagner S, Rothweiler F, Anhorn MG, Sauer D, Riemann I, Weiss EC, Katsen-Globa A, Michaelis M, Cinatl J Jr, Schwartz D, Kreuter J, von Briesen H, Langer K. (2010). Enhanced drug targeting by attachment of an anti alphav integrin antibody to doxorubicin loaded human serum albumin nanoparticles. Biomaterials, 31, 2388–2398.
  • Wang C, Ding C, Kong M, Dong A, Qian J, Jiang D, Shen Z. (2011). Tumor-targeting magnetic lipoplex delivery of short hairpin RNA suppresses IGF-1R overexpression of lung adenocarcinoma A549 cells in vitro and in vivo. Biochem Biophys Res Commun, 410, 537–542.
  • Wang CH, Kang ST, Lee YH, Luo YL, Huang YF, Yeh CK. (2012). Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis. Biomaterials, 33, 1939–1947.
  • Wang J, Tian S, Petros RA, Napier ME, Desimone JM. (2010). The complex role of multivalency in nanoparticles targeting the transferrin receptor for cancer therapies. J Am Chem Soc, 132, 11306–11313.
  • Ward MA, Georgiou TK. (2011). Thermoresponsive polymers for biomedical applications. Polymers, 3, 1215–1242.
  • Watson SR, Chang YF, O’Connell D, Weigand L, Ringquist S, Parma DH. (2000). Anti-L-selectin aptamers: binding characteristics, pharmacokinetic parameters, and activity against an intravascular target in vivo. Antisense Nucleic Acid Drug Dev, 10, 63–75.
  • Widder KJ, Morris RM, Poore GA, Howard DP, Senyei AE. (1983). Selective targeting of magnetic albumin microspheres containing low-dose doxorubicin: total remission in Yoshida sarcoma-bearing rats. Eur J Cancer Clin Oncol, 19, 135–139.
  • Williams J, Lansdown R, Sweitzer R, Romanowski M, LaBell R, Ramaswami R, Unger E. (2003). Nanoparticle drug delivery system for intravenous delivery of topoisomerase inhibitors. J Control Release, 91, 167–172.
  • Won YW, Yoon SM, Sonn CH, Lee KM, Kim YH. (2011). Nano self-assembly of recombinant human gelatin conjugated with a-tocopheryl succinate for Hsp90 inhibitor, 17-AAG, delivery. ACS Nano, 5, 3839–3848.
  • Wu HC, Chang DK. (2010). Peptide-mediated liposomal drug delivery system targeting tumor blood vessels in anticancer therapy. J Oncol, 2010, 723798.
  • Wu Z, Tang LJ, Zhang XB, Jiang JH, Tan W. (2011). Aptamer-modified nanodrug delivery systems. ACS Nano, 5, 7696–7699.
  • Wuang SC, Neoh KG, Kang ET, Leckband DE, Pack DW. (2011). Acid-Sensitive Magnetic Nanoparticles as Potential Drug Depots. AIChE J, 57, 1638–1645.
  • Xie H, Diagaradjane P, Deorukhkar AA, Goins B, Bao A, Phillips WT, Wang Z, Schwartz J, Krishnan S. (2011). Integrin avß3-targeted gold nanoshells augment tumor vasculature-specific imaging and therapy. Int J Nanomedicine, 6, 259–269.
  • Xu Z, Chen L, Gu W, Gao Y, Lin L, Zhang Z, Xi Y, Li Y. (2009). The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials, 30, 226–232.
  • Yan GP, Zong RF, Li L, Fu T, Liu F, Yu XH. (2010). Anticancer drug-loaded nanospheres based on biodegradable amphiphilic e-caprolactone and carbonate copolymers. Pharm Res, 27, 2743–2752.
  • Yang X, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, Matson VZ, Steeber DA, Gong S. (2010). Multifunctional stable and pH-responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging. ACS Nano, 4, 6805–6817.
  • Yao HP, Zhou YQ, Ma Q, Guin S, Padhye SS, Zhang RW, Wang MH. (2011). The monoclonal antibody Zt/f2 targeting RON receptor tyrosine kinase as potential therapeutics against tumor growth-mediated by colon cancer cells. Mol Cancer, 10, 82.
  • Yoo HS, Park TG. (2004). Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate. J Control Release, 100, 247–256.
  • Yoshizawa T, Hattori Y, Hakoshima M, Koga K, Maitani Y. (2008). Folate-linked lipid-based nanoparticles for synthetic siRNA delivery in KB tumor xenografts. Eur J Pharm Biopharm, 70, 718–725.
  • Young LG, Kyeongsoon P, Hee NJ, Yoon KS, Youngro B. (2006). Antitumor and anti-metastatic effects of gelatin-doxorubicin and PEGylated gelatin-doxorubicin nanoparticles in SSC7 bearing mice. J Drug Target, 14, 707–716.
  • Yu C, Hu Y, Duan J, Yuan W, Wang C, Xu H, Yang XD. (2011). Novel aptamer-nanoparticle bioconjugates enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro. PLoS ONE, 6, e24077.
  • Yu W, Liu C, Liu Y, Zhang N, Xu W. (2010). Mannan-modified solid lipid nanoparticles for targeted gene delivery to alveolar macrophages. Pharm Res, 27, 1584–1596.
  • Zhang XY, Chen J, Gao XL, Sun H, Xu CJ. (2008). [Preparation and in vitro targeting of follicle stimulating hormone polypeptide modified nanoparticles]. Zhonghua Fu Chan Ke Za Zhi, 43, 533–537.
  • Zhang Y, Thomas TP, Lee KH, Li M, Zong H, Desai AM, Kotlyar A, Huang B, Holl MM, Baker JR Jr. (2011). Polyvalent saccharide-functionalized generation 3 poly(amidoamine) dendrimer-methotrexate conjugate as a potential anticancer agent. Bioorg Med Chem, 19, 2557–2564.
  • Zhao XW, van Beek EM, Schornagel K, Van der Maaden H, Van Houdt M, Otten MA, Finetti P, Van Egmond M, Matozaki T, Kraal G, Birnbaum D, van Elsas A, Kuijpers TW, Bertucci F, van den Berg TK. (2011). CD47-signal regulatory protein-a (SIRPa) interactions form a barrier for antibody-mediated tumor cell destruction. Proc Natl Acad Sci USA, 108, 18342–18347.
  • Zhao Y, Lu Y, Hu Y, Li JP, Dong L, Lin LN, Yu SH. (2010). Synthesis of superparamagnetic CaCO3 mesocrystals for multistage delivery in cancer therapy. Small, 6, 2436–2442.
  • Zheng C, Feng J, Lu D, Wang P, Xing S, Coll JL, Yang D, Yan X. (2011). A novel anti-CEACAM5 monoclonal antibody, CC4, suppresses colorectal tumor growth and enhances NK cells-mediated tumor immunity. PLoS ONE, 6, e21146.
  • Zili S, Dimitris T, Paleos Constantinos M. (2001). Solubilization and release properties of PEGylated diaminobutane poly(propylene imine) dendrimers. J Colloid Interface Sci, 242, 272–276.
  • Zhou Q, Guo X, Chen T, Zhang Z, Shao S, Luo C, Li J, Zhou S. (2011). Target-specific cellular uptake of folate-decorated biodegradable polymer micelles. J Phys Chem B, 115, 12662–12670.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.