382
Views
22
CrossRef citations to date
0
Altmetric
Research Article

Targeting combinations of liposomal drugs to both tumor vasculature cells and tumor cells for the treatment of HER2-positive breast cancer

, &
Pages 87-96 | Received 01 Aug 2012, Accepted 08 Sep 2012, Published online: 08 Oct 2012

References

  • Allen TM, Sapra P, Moase E, Moreira J, Iden D. (2002). Adventures in targeting. J Liposome Res, 12, 5–12.
  • Aragnol D, Leserman LD. (1986). Immune clearance of liposomes inhibited by an anti-Fc receptor antibody in vivo. Proc Natl Acad Sci USA, 83, 2699–2703.
  • Bolotin EM, Cohen R, Bar LK, Emanuel SN, Lasic DD, Barenholz Y. (1994). Ammonium sulphate gradients for efficient and stable remote loading of amphipathic weak bases into liposomes and ligandosomes. J Liposome Res, 4, 455–479.
  • Brignole C, Marimpietri D, Gambini C, Allen TM, Ponzoni M, Pastorino F. (2003). Development of Fab’ fragments of anti-GD(2) immunoliposomes entrapping doxorubicin for experimental therapy of human neuroblastoma. Cancer Lett, 197, 199–204.
  • Carrick S, Parker S, Wilcken N, Ghersi D, Marzo M, Simes J. (2005). Single agent versus combination chemotherapy for metastatic breast cancer. Cochrane Database Syst Rev, CD003372.
  • Chaplin DJ, Hill SA. (2002). The development of combretastatin A4 phosphate as a vascular targeting agent. Int J Radiat Oncol Biol Phys, 54, 1491–1496.
  • Chaplin DJ, Pettit GR, Hill SA. (1999). Anti-vascular approaches to solid tumour therapy: evaluation of combretastatin A4 phosphate. Anticancer Res, 19, 189–195.
  • Chauhan VP, Stylianopoulos T, Martin JD, Popovic Z, Chen O, Kamoun WS, Bawendi MG, Fukumura D, Jain RK. (2012). Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol, 7, 383–388.
  • Cheng WW, Allen TM. (2008). Targeted delivery of anti-CD19 liposomal doxorubicin in B-cell lymphoma: a comparison of whole monoclonal antibody, Fab’ fragments and single chain Fv. J Control Release, 126, 50–58.
  • Denekamp J. (1982). Endothelial cell proliferation as a novel approach to targeting tumour therapy. Br J Cancer, 45, 136–139.
  • Denekamp J. (1984). Vascular endothelium as the vulnerable element in tumours. Acta Radiol Oncol, 23, 217–225.
  • Denekamp J. (1999). The tumour microcirculation as a target in cancer therapy: a clearer perspective. Eur J Clin Invest, 29, 733–736.
  • Ebos JM, Kerbel RS. (2011). Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol, 8, 210–221.
  • Eichhorn ME, Strieth S, Dellian M. (2004). Anti-vascular tumor therapy: recent advances, pitfalls and clinical perspectives. Drug Resist Updat, 7, 125–138.
  • Folkman J. (1971). Tumor angiogenesis: therapeutic implications. N Engl J Med, 285, 1182–1186.
  • Folkman J. (1972). Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg, 175, 409–416.
  • Folkman J, Merler E, Abernathy C, Williams G. (1971). Isolation of a tumor factor responsible for angiogenesis. J Exp Med, 133, 275–288.
  • Fossati R, Confalonieri C, Torri V, Ghislandi E, Penna A, Pistotti V, Tinazzi A, Liberati A. (1998). Cytotoxic and hormonal treatment for metastatic breast cancer: a systematic review of published randomized trials involving 31,510 women. J Clin Oncol, 16, 3439–3460.
  • Goel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK. (2011). Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev, 91, 1071–1121.
  • Jain RK. (2001). Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med, 7, 987–989.
  • Jain RK. (2005). Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science, 307, 58–62.
  • Koning GA, Kamps JA, Scherphof GL. (2002). Interference of macrophages with immunotargeting of liposomes. J Liposome Res, 12, 107–119.
  • Mayhew EG, Lasic D, Babbar S, Martin FJ. (1992). Pharmacokinetics and antitumor activity of epirubicin encapsulated in long-circulating liposomes incorporating a polyethylene glycol-derivatized phospholipid. Int J Cancer, 51, 302–309.
  • Moase EH, Qi W, Ishida T, Gabos Z, Longenecker BM, Zimmermann GL, Ding L, Krantz M, Allen TM. (2001). Anti-MUC-1 immunoliposomal doxorubicin in the treatment of murine models of metastatic breast cancer. Biochim Biophys Acta, 1510, 43–55.
  • Noble CO, Kirpotin DB, Hayes ME, Mamot C, Hong K, Park JW, Benz CC, Marks JD, Drummond DC. (2004). Development of ligand-targeted liposomes for cancer therapy. Expert Opin Ther Targets, 8, 335–353.
  • Papahadjopoulos D, Allen TM, Gabizon A, Mayhew E, Matthay K, Huang SK, Lee KD, Woodle MC, Lasic DD, Redemann C. (1991). Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA, 88, 11460–11464.
  • Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W, Ruoslahti E. (2000). Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res, 60, 722–727.
  • Pastorino F, Brignole C, Di Paolo D, Nico B, Pezzolo A, Marimpietri D, Pagnan G, Piccardi F, Cilli M, Longhi R, Ribatti D, Corti A, Allen TM, Ponzoni M. (2006). Targeting liposomal chemotherapy via both tumor cell-specific and tumor vasculature-specific ligands potentiates therapeutic efficacy. Cancer Res, 66, 10073–10082.
  • Pastorino F, Brignole C, Marimpietri D, Cilli M, Gambini C, Ribatti D, Longhi R, Allen TM, Corti A, Ponzoni M. (2003). Vascular damage and anti-angiogenic effects of tumor vessel-targeted liposomal chemotherapy. Cancer Res, 63, 7400–7409.
  • Pool GL, French ME, Edwards RA, Huang L, Lumb RH. (1982). Use of radiolabeled hexadecyl cholesteryl ether as a liposome marker. Lipids, 17, 448–452.
  • Ruoslahti E. (1996). RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol, 12, 697–715.
  • Schiffelers RM, Fens MH, Janssen AP, Molema G, Storm G. (2005). Liposomal targeting of angiogenic vasculature. Curr Drug Deliv, 2, 363–368.
  • Sitohy B, Nagy JA, Dvorak HF. (2012). Anti-VEGF/VEGFR therapy for cancer: reassessing the target. Cancer Res, 72, 1909–1914.
  • Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. (1987). Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science, 235, 177–182.
  • Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med, 344, 783–792.
  • Thorpe PE. (2004). Vascular targeting agents as cancer therapeutics. Clin Cancer Res, 10, 415–427.
  • Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK. (2004). Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res, 64, 3731–3736.
  • van Osdol W, Fujimori K, Weinstein JN. (1991). An analysis of monoclonal antibody distribution in microscopic tumor nodules: consequences of a “binding site barrier”. Cancer Res, 51, 4776–4784.
  • Verreault M, Strutt D, Masin D, Anantha M, Yung A, Kozlowski P, Waterhouse D, Bally MB, Yapp DT. (2011). Vascular normalization in orthotopic glioblastoma following intravenous treatment with lipid-based nanoparticulate formulations of irinotecan (Irinophore C™), doxorubicin (Caelyx®) or vincristine. BMC Cancer, 11, 124.
  • Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M, Novotny WF, Burchmore M, Shak S, Stewart SJ. (2001). First-line Herceptin monotherapy in metastatic breast cancer. Oncology, 61 Suppl 2, 37–42.
  • Wicki A, Rochlitz C, Orleth A, Ritschard R, Albrecht I, Herrmann R, Christofori G, Mamot C. (2012). Targeting tumor-associated endothelial cells: anti-VEGFR2 immunoliposomes mediate tumor vessel disruption and inhibit tumor growth. Clin Cancer Res, 18, 454–464.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.