219
Views
8
CrossRef citations to date
0
Altmetric
Mini-Review

Engineered dendritic cells for gastrointestinal tumor immunotherapy: opportunities in translational research

, , &
Pages 126-136 | Received 18 Apr 2012, Accepted 13 Sep 2012, Published online: 15 Oct 2012

References

  • Altin JG, van Broekhoven CL, Parish CR. (2004). Targeting dendritic cells with antigen-containing liposomes: antitumour immunity. Expert Opin Biol Ther, 4, 1735–1747.
  • Babatz J, Röllig C, Oelschlägel U, Zhao S, Ehninger G, Schmitz M, Bornhäuser M. (2003). Large-scale immunomagnetic selection of CD14+ monocytes to generate dendritic cells for cancer immunotherapy: a phase I study. J Hematother Stem Cell Res, 12, 515–523.
  • Babatz J, Röllig C, Löbel B, Folprecht G, Haack M, Günther H, Köhne CH, Ehninger G, Schmitz M, Bornhäuser M. (2006). Induction of cellular immune responses against carcinoembryonic antigen in patients with metastatic tumors after vaccination with altered peptide ligand-loaded dendritic cells. Cancer Immunol Immunother, 55, 268–276.
  • Baeten CI, Castermans K, Lammering G, Hillen F, Wouters BG, Hillen HF, Griffioen AW, Baeten CG. (2006). Effects of radiotherapy and chemotherapy on angiogenesis and leukocyte infiltration in rectal cancer. Int J Radiat Oncol Biol Phys, 66, 1219–1227.
  • Balan S, Kale VP, Limaye LS. (2009). A simple two-step culture system for the large-scale generation of mature and functional dendritic cells from umbilical cord blood CD34+ cells. Transfusion, 49, 2109–2121.
  • Barth RJ, Fisher DA, Wallace PK, Channon JY, Noelle RJ, Gui J, Ernstoff MS. (2010). A randomized trial of ex vivo CD40L activation of a dendritic cell vaccine in colorectal cancer patients: tumor-specific immune responses are associated with improved survival. Clin Cancer Res, 16, 5548–5556.
  • Bauer C, Dauer M, Saraj S, Schnurr M, Bauernfeind F, Sterzik A, Junkmann J, Jakl V, Kiefl R, Oduncu F, Emmerich B, Mayr D, Mussack T, Bruns C, Rüttinger D, Conrad C, Jauch KW, Endres S, Eigler A. (2011). Dendritic cell-based vaccination of patients with advanced pancreatic carcinoma: results of a pilot study. Cancer Immunol Immunother, 60, 1097–1107.
  • Bazile D, Prud’homme C, Bassoullet MT, Marlard M, Spenlehauer G, Veillard M. (1995). Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. J Pharm Sci, 84, 493–498.
  • Bhargava A, Mishra D, Banerjee S, Mishra PK. (2012). Dendritic cell engineering for tumor immunotherapy: from biology to clinical translation. Immunotherapy, 4, 703–718.
  • Bianchi G, Borgonovo G, Pistoia V, Raffaghello L. (2011). Immunosuppressive cells and tumour microenvironment: focus on mesenchymal stem cells and myeloid derived suppressor cells. Histol Histopathol, 26, 941–951.
  • Blasi P, Giovagnoli S, Schoubben A, Ricci M, Rossi C. (2007). Solid lipid nanoparticles for targeted brain drug delivery. Adv Drug Deliv Rev, 59, 454–477.
  • Bondì ML, Craparo EF, Giammona G, Drago F. (2010). Brain-targeted solid lipid nanoparticles containing riluzole: preparation, characterization and biodistribution. Nanomedicine (Lond), 5, 25–32.
  • Bordón E, Henríquez-Hernández LA, Lara PC, Pinar B, Rodríguez-Gallego C, Lloret M. (2011). Role of CD4 and CD8 T-lymphocytes, B-lymphocytes and Natural Killer cells in the prediction of radiation-induced late toxicity in cervical cancer patients. Int J Radiat Biol, 87, 424–431.
  • Boullart AC, Aarntzen EH, Verdijk P, Jacobs JF, Schuurhuis DH, Benitez-Ribas D, Schreibelt G, van de Rakt MW, Scharenborg NM, de Boer A, Kramer M, Figdor CG, Punt CJ, Adema GJ, de Vries IJ. (2008). Maturation of monocyte-derived dendritic cells with Toll-like receptor 3 and 7/8 ligands combined with prostaglandin E2 results in high interleukin-12 production and cell migration. Cancer Immunol Immunother, 57, 1589–1597.
  • Bourquin C, Anz D, Zwiorek K, Lanz AL, Fuchs S, Weigel S, Wurzenberger C, von der Borch P, Golic M, Moder S, Winter G, Coester C, Endres S. (2008). Targeting CpG oligonucleotides to the lymph node by nanoparticles elicits efficient antitumoral immunity. J Immunol, 181, 2990–2998.
  • Bray F, Ren JS, Masuyer E, Ferlay J. (2012). Global estimates of cancer prevalence for 27 sites in the adult population in 2008. Int J Cancer, DOI: 10.1002/ijc.27711.
  • Burgdorf SK, Fischer A, Myschetzky PS, Munksgaard SB, Zocca MB, Claesson MH, Rosenberg J. (2008). Clinical responses in patients with advanced colorectal cancer to a dendritic cell based vaccine. Oncol Rep, 20, 1305–1311.
  • Burgdorf SK. (2010). Dendritic cell vaccination of patients with metastatic colorectal cancer. Dan Med Bull, 57, B4171.
  • Cantini G, Pisati F, Mastropietro A, Frattini V, Iwakura Y, Finocchiaro G, Pellegatta S. (2011). A critical role for regulatory T cells in driving cytokine profiles of Th17 cells and their modulation of glioma microenvironment. Cancer Immunol Immunother, 60, 1739–1750.
  • Cervera P, Fléjou JF. (2011). Changing pathology with changing drugs: tumors of the gastrointestinal tract. Pathobiology, 78, 76–89.
  • Chi KH, Liu SJ, Li CP, Kuo HP, Wang YS, Chao Y, Hsieh SL. (2005). Combination of conformal radiotherapy and intratumoral injection of adoptive dendritic cell immunotherapy in refractory hepatoma. J Immunother, 28, 129–135.
  • Cruz LJ, Rueda F, Cordobilla B, Simón L, Hosta L, Albericio F, Domingo JC. (2011). Targeting nanosystems to human DCs via Fc receptor as an effective strategy to deliver antigen for immunotherapy. Mol Pharm, 8, 104–116.
  • Cruz LJ, Tacken PJ, Fokkink R, Joosten B, Stuart MC, Albericio F, Torensma R, Figdor CG. (2010). Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J Control Release, 144, 118–126.
  • Cruz LJ, Tacken PJ, Rueda F, Domingo JC, Albericio F, Figdor CG. (2012). Targeting nanoparticles to dendritic cells for immunotherapy. Meth Enzymol, 509, 143–163.
  • Dauer M, Obermaier B, Herten J, Haerle C, Pohl K, Rothenfusser S, Schnurr M, Endres S, Eigler A. (2003). Mature dendritic cells derived from human monocytes within 48 hours: a novel strategy for dendritic cell differentiation from blood precursors. J Immunol, 170, 4069–4076.
  • Dominguez AL, Lustgarten J. (2010). Targeting the tumor microenvironment with anti-neu/anti-CD40 conjugated nanoparticles for the induction of antitumor immune responses. Vaccine, 28, 1383–1390.
  • Dong R, Moulding D, Himoudi N, Adams S, Bouma G, Eddaoudi A, Basu BP, Derniame S, Chana P, Duncan A, Anderson J. (2011). Cells with dendritic cell morphology and immunophenotype, binuclear morphology, and immunosuppressive function in dendritic cell cultures. Cell Immunol, 272, 1–10.
  • Elamanchili P, Lutsiak CM, Hamdy S, Diwan M, Samuel J. (2007). “Pathogen-mimicking” nanoparticles for vaccine delivery to dendritic cells. J Immunother, 30, 378–395.
  • Fahmy TM, Demento SL, Caplan MJ, Mellman I, Saltzman WM. (2008). Design opportunities for actively targeted nanoparticle vaccines. Nanomedicine (Lond), 3, 343–355.
  • Fong L, Hou Y, Rivas A, Benike C, Yuen A, Fisher GA, Davis MM, Engleman EG. (2001). Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci USA, 98, 8809–8814.
  • Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. GLOBOCAN 2008 v1.2, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 10 [Internet]. Lyon, France: International Agency for Research on Cancer; 2010. Available from: http://globocan.iarc.fr. Accessed on 21/08/2012.
  • Galetto A, Contarini M, Sapino A, Cassoni P, Consalvo E, Forno S, Pezzi C, Barnaba V, Mussa A, Matera L. (2001). Ex vivo host response to gastrointestinal cancer cells presented by autologous dendritic cells. J Surg Res, 100, 32–38.
  • Gao J, Chen M, Ren H. (2005). [Clinical effects of dendritic cells pulsed with autologous hepatoma cell lysates on the postoperative recurrence and metastasis of hepatocellular carcinoma]. Zhonghua Gan Zang Bing Za Zhi, 13, 432–435.
  • Gholamin M, Moaven O, Farshchian M, Mahmoudi M, Sankian M, Memar B, Forghani MN, Malekzadeh R, Rajabi-Mashhadi MT, Abbaszadegan MR. (2010). Induction of cytotoxic T lymphocytes primed with tumor RNA-loaded dendritic cells in esophageal squamous cell carcinoma: preliminary step for DC vaccine design. BMC Cancer, 10, 261.
  • Gilboa E. (2007). DC-based cancer vaccines. J Clin Invest, 117, 1195–1203.
  • Goswami S, Bose A, Sarkar K, Roy S, Chakraborty T, Sanyal U, Baral R. (2010). Neem leaf glycoprotein matures myeloid derived dendritic cells and optimizes anti-tumor T cell functions. Vaccine, 28, 1241–1252.
  • Grossman SA, Ye X, Lesser G, Sloan A, Carraway H, Desideri S, Piantadosi S; NABTT CNS Consortium. (2011). Immunosuppression in patients with high-grade gliomas treated with radiation and temozolomide. Clin Cancer Res, 17, 5473–5480.
  • Hamdy S, Haddadi A, Hung RW, Lavasanifar A. (2011). Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv Drug Deliv Rev, 63, 943–955.
  • Heit A, Schmitz F, Haas T, Busch DH, Wagner H. (2007). Antigen co-encapsulated with adjuvants efficiently drive protective T cell immunity. Eur J Immunol, 37, 2063–2074.
  • Homayounfar K, Bleckmann A, Conradi LC, Sprenger T, Beissbarth T, Lorf T, Niessner M, Sahlmann CO, Meller J, Becker H, Liersch T, Ghadimi BM. (2012). Bilobar spreading of colorectal liver metastases does not significantly affect survival after R0 resection in the era of interdisciplinary multimodal treatment. Int J Colorectal Dis, 27, 1359–1367.
  • Huang FP, Chen YX, To CK. (2011). Guiding the “misguided” - functional conditioning of dendritic cells for the DC-based immunotherapy against tumours. Eur J Immunol, 41, 18–25.
  • Ishii M, Kato C, Hakamata A, Kojima N. (2011). Targeting with oligomannose-coated liposomes promotes maturation and splenic trafficking of dendritic cells in the peritoneal cavity. Int Immunopharmacol, 11, 164–171.
  • Iwata-Kajihara T, Sumimoto H, Kawamura N, Ueda R, Takahashi T, Mizuguchi H, Miyagishi M, Takeda K, Kawakami Y. (2011). Enhanced cancer immunotherapy using STAT3-depleted dendritic cells with high Th1-inducing ability and resistance to cancer cell-derived inhibitory factors. J Immunol, 187, 27–36.
  • Janikashvili N, Bonnotte B, Katsanis E, Larmonier N. (2011). The dendritic cell-regulatory T lymphocyte crosstalk contributes to tumor-induced tolerance. Clin Dev Immunol, 2011, 430394.
  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. (2011). Global cancer statistics. CA Cancer J Clin, 61, 69–90.
  • Kavanagh B, Ko A, Venook A, Margolin K, Zeh H, Lotze M, Schillinger B, Liu W, Lu Y, Mitsky P, Schilling M, Bercovici N, Loudovaris M, Guillermo R, Lee SM, Bender J, Mills B, Fong L. (2007). Vaccination of metastatic colorectal cancer patients with matured dendritic cells loaded with multiple major histocompatibility complex class I peptides. J Immunother, 30, 762–772.
  • Keyomarsi K, Pardee AB. (2003). Selective protection of normal proliferating cells against the toxic effects of chemotherapeutic agents. Prog Cell Cycle Res, 5, 527–532.
  • Kim HG, Ryu SY, Joo JK, Kang H, Lee JH, Kim DY. (2011). Recurring gastrointestinal stromal tumor with splenic metastasis. J Korean Surg Soc, 81 Suppl 1, S25–S29.
  • Kimura Y, Tsukada J, Tomoda T, Takahashi H, Imai K, Shimamura K, Sunamura M, Yonemitsu Y, Shimodaira S, Koido S, Homma S, Okamoto M. (2012). Clinical and immunologic evaluation of dendritic cell-based immunotherapy in combination with gemcitabine and/or S-1 in patients with advanced pancreatic carcinoma. Pancreas, 41, 195–205.
  • Kobayashi N, Hiraoka N, Yamagami W, Ojima H, Kanai Y, Kosuge T, Nakajima A, Hirohashi S. (2007). FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Cancer Res, 13, 902–911.
  • Kono K, Takahashi A, Sugai H, Fujii H, Choudhury AR, Kiessling R, Matsumoto Y. (2002). Dendritic cells pulsed with HER-2/neu-derived peptides can induce specific T-cell responses in patients with gastric cancer. Clin Cancer Res, 8, 3394–3400.
  • Kulkarni SA, Feng SS. (2011). Surface functionalized nanoparticles of biodegradable polymers for targeted delivery of diagnostic and therapeutic agents across the blood-brain barrier (BBB). Nanomedicine (Lond.), 6, 377–394.
  • Kwon YJ, James E, Shastri N, Fréchet JM. (2005). In vivo targeting of dendritic cells for activation of cellular immunity using vaccine carriers based on pH-responsive microparticles. Proc Natl Acad Sci USA, 102, 18264–18268.
  • Larmonier N, Mérino D, Nicolas A, Cathelin D, Besson A, Bateman A, Solary E, Martin F, Katsanis E, Bonnotte B. (2006). Apoptotic, necrotic, or fused tumor cells: an equivalent source of antigen for dendritic cell loading. Apoptosis, 11, 1513–1524.
  • Lechner MG, Liebertz DJ, Epstein AL. (2010). Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol, 185, 2273–2284.
  • Lee WC, Wang HC, Hung CF, Huang PF, Lia CR, Chen MF. (2005). Vaccination of advanced hepatocellular carcinoma patients with tumor lysate-pulsed dendritic cells: a clinical trial. J Immunother, 28, 496–504.
  • Lemay R, Archambault M, Tremblay L, Bujold R, Lepage M, Paquette B. (2011). Irradiation of normal mouse tissue increases the invasiveness of mammary cancer cells. Int J Radiat Biol, 87, 472–482.
  • Lepisto AJ, Moser AJ, Zeh H, Lee K, Bartlett D, McKolanis JR, Geller BA, Schmotzer A, Potter DP, Whiteside T, Finn OJ, Ramanathan RK. (2008). A phase I/II study of a MUC1 peptide pulsed autologous dendritic cell vaccine as adjuvant therapy in patients with resected pancreatic and biliary tumors. Cancer Ther, 6, 955–964.
  • Lesterhuis WJ, de Vries IJ, Schuurhuis DH, Boullart AC, Jacobs JF, de Boer AJ, Scharenborg NM, Brouwer HM, van de Rakt MW, Figdor CG, Ruers TJ, Adema GJ, Punt CJ. (2006). Vaccination of colorectal cancer patients with CEA-loaded dendritic cells: antigen-specific T cell responses in DTH skin tests. Ann Oncol, 17, 974–980.
  • Lesterhuis WJ, de Vries IJ, Aarntzen EA, de Boer A, Scharenborg NM, van de Rakt M, van Spronsen DJ, Preijers FW, Figdor CG, Adema GJ, Punt CJ. (2010a). A pilot study on the immunogenicity of dendritic cell vaccination during adjuvant oxaliplatin/capecitabine chemotherapy in colon cancer patients. Br J Cancer, 103, 1415–1421.
  • Lesterhuis WJ, De Vries IJ, Schreibelt G, Schuurhuis DH, Aarntzen EH, De Boer A, Scharenborg NM, Van De Rakt M, Hesselink EJ, Figdor CG, Adema GJ, Punt CJ. (2010b). Immunogenicity of dendritic cells pulsed with CEA peptide or transfected with CEA mRNA for vaccination of colorectal cancer patients. Anticancer Res, 30, 5091–5097.
  • Luo G, Yu X, Jin C, Yang F, Fu D, Long J, Xu J, Zhan C, Lu W. (2010). LyP-1-conjugated nanoparticles for targeting drug delivery to lymphatic metastatic tumors. Int J Pharm, 385, 150–156.
  • Maddika S, Mendoza FJ, Hauff K, Zamzow CR, Paranjothy T, Los M. (2006). Cancer-selective therapy of the future: apoptin and its mechanism of action. Cancer Biol Ther, 5, 10–19.
  • Madhavi M, Madhavi K, Jithan AV. (2012). Preparation and in vitro/in vivo characterization of curcumin microspheres intended to treat colon cancer. J Pharm Bioallied Sci, 4, 164–171.
  • Middel P, Brauneck S, Meyer W, Radzun HJ. (2010). Chemokine-mediated distribution of dendritic cell subsets in renal cell carcinoma. BMC Cancer, 10, 578.
  • Mishra D, Mishra PK, Dubey V, Dabadghao S, Jain NK. (2007). Evaluation of uptake and generation of immune response by murine dendritic cells pulsed with hepatitis B surface antigen-loaded elastic liposomes. Vaccine, 25, 6939–6944.
  • Mishra D, Mishra PK, Dubey V, Nahar M, Dabadghao S, Jain NK. (2008). Systemic and mucosal immune response induced by transcutaneous immunization using Hepatitis B surface antigen-loaded modified liposomes. Eur J Pharm Sci, 33, 424–433.
  • Mishra H, Mishra D, Mishra PK, Nahar M, Dubey V, Jain NK. (2010). Evaluation of solid lipid nanoparticles as carriers for delivery of hepatitis B surface antigen for vaccination using subcutaneous route. J Pharm Pharm Sci, 13, 495–509.
  • Mishra PK, Jatawa SK, Raghuram GV, Pathak N, Jain A, Tiwari A, Varshney S, Maudar KK. (2009). Correlation of aberrant expression of p53, Rad50, and cyclin-E proteins with microsatellite instability in gallbladder adenocarcinomas. Genet Mol Res, 8, 1202–1210.
  • Mishra PK, Raghuram GV, Jatawa SK, Bhargava A, Varshney S. (2011). Frequency of genetic alterations observed in cell cycle regulatory proteins and microsatellite instability in gallbladder adenocarcinoma: a translational perspective. Asian Pac J Cancer Prev, 12, 573–574.
  • Miyazawa M, Iwahashi M, Ojima T, Katsuda M, Nakamura M, Nakamori M, Ueda K, Naka T, Hayata K, Iida T, Yamaue H. (2011). Dendritic cells adenovirally-transduced with full-length mesothelin cDNA elicit mesothelin-specific cytotoxicity against pancreatic cancer cell lines in vitro. Cancer Lett, 305, 32–39.
  • Mohanan D, Slütter B, Henriksen-Lacey M, Jiskoot W, Bouwstra JA, Perrie Y, Kündig TM, Gander B, Johansen P. (2010). Administration routes affect the quality of immune responses: A cross-sectional evaluation of particulate antigen-delivery systems. J Control Release, 147, 342–349.
  • Morse MA, Nair SK, Mosca PJ, Hobeika AC, Clay TM, Deng Y, Boczkowski D, Proia A, Neidzwiecki D, Clavien PA, Hurwitz HI, Schlom J, Gilboa E, Lyerly HK. (2003). Immunotherapy with autologous, human dendritic cells transfected with carcinoembryonic antigen mRNA. Cancer Invest, 21, 341–349.
  • Mottram PL, Leong D, Crimeen-Irwin B, Gloster S, Xiang SD, Meanger J, Ghildyal R, Vardaxis N, Plebanski M. (2007). Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus. Mol Pharm, 4, 73–84.
  • Mou Y, Hou Y, Chen B, Hua Z, Zhang Y, Xie H, Xia G, Wang Z, Huang X, Han W, Ni Y, Hu Q. (2011). In vivo migration of dendritic cells labeled with synthetic superparamagnetic iron oxide. Int J Nanomedicine, 6, 2633–2640.
  • Muller RH, Wallis KH. (1993). Surface modification of i.v. injectable biodegradable nanoparticles with poloxamer polymers and poloxamine 908. Int J Pharm, 89, 25–31.
  • Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D, Mellor AL. (2005). GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity, 22, 633–642.
  • Muthuswamy R, Urban J, Lee JJ, Reinhart TA, Bartlett D, Kalinski P. (2008). Ability of mature dendritic cells to interact with regulatory T cells is imprinted during maturation. Cancer Res, 68, 5972–5978.
  • Nakamura M, Wada J, Suzuki H, Tanaka M, Katano M, Morisaki T. (2009). Long-term outcome of immunotherapy for patients with refractory pancreatic cancer. Anticancer Res, 29, 831–836.
  • Ogihara T, Iinuma H, Okinaga K. (2004). Usefulness of immunomodulators for maturation of dendritic cells. Int J Oncol, 25, 453–459.
  • Ojima T, Iwahashi M, Nakamura M, Matsuda K, Nakamori M, Ueda K, Naka T, Ishida K, Primus FJ, Yamaue H. (2007). Successful cancer vaccine therapy for carcinoembryonic antigen (CEA)-expressing colon cancer using genetically modified dendritic cells that express CEA and T helper-type 1 cytokines in CEA transgenic mice. Int J Cancer, 120, 585–593.
  • Onishi H, Morisaki T, Baba E, Nakamura M, Inaba S, Kuroki H, Matsumoto K, Katano M. (2011). Long-term vaccine therapy with autologous whole tumor cell-pulsed dendritic cells for a patient with recurrent rectal carcinoma. Anticancer Res, 31, 3995–4005.
  • Pajtasz-Piasecka E, Indrová M. (2010). Dendritic cell-based vaccines for the therapy of experimental tumors. Immunotherapy, 2, 257–268.
  • Palmer DH, Midgley RS, Mirza N, Torr EE, Ahmed F, Steele JC, Steven NM, Kerr DJ, Young LS, Adams DH. (2009). A phase II study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinoma. Hepatology, 49, 124–132.
  • Pandit AA, Dash AK. (2011). Surface-modified solid lipid nanoparticulate formulation for ifosfamide: development and characterization. Nanomedicine (Lond), 6, 1397–1412.
  • Pecher G, Häring A, Kaiser L, Thiel E. (2002). Mucin gene (MUC1) transfected dendritic cells as vaccine: results of a phase I/II clinical trial. Cancer Immunol Immunother, 51, 669–673.
  • Peng W, Zhao G, Ma Y, Yu H, Wang X. (2011). Dendritic cells transfected with PEG10 recombinant adenovirus elicit anti-tumor immune response in vitro and in vivo. Vaccine, 29, 3501–3506.
  • Pham TN, Hong CY, Min JJ, Rhee JH, Nguyen TA, Park BC, Yang DH, Park YK, Kim HR, Chung IJ, Kim HJ, Lee JJ. (2010). Enhancement of antitumor effect using dendritic cells activated with natural killer cells in the presence of Toll-like receptor agonist. Exp Mol Med, 42, 407–419.
  • Poglio S, Galvani S, Bour S, André M, Prunet-Marcassus B, Pénicaud L, Casteilla L, Cousin B. (2009). Adipose tissue sensitivity to radiation exposure. Am J Pathol, 174, 44–53.
  • Prasad S, Cody V, Saucier-Sawyer JK, Saltzman WM, Sasaki CT, Edelson RL, Birchall MA, Hanlon DJ. (2011). Polymer nanoparticles containing tumor lysates as antigen delivery vehicles for dendritic cell-based antitumor immunotherapy. Nanomedicine, 7, 1–10.
  • Prestwich RJ, Errington F, Hatfield P, Merrick AE, Ilett EJ, Selby PJ, Melcher AA. (2008). The immune system–is it relevant to cancer development, progression and treatment? Clin Oncol (R Coll Radiol), 20, 101–112.
  • Raïch-Regué D, Naranjo-Gómez M, Grau-López L, Ramo C, Pujol-Borrell R, Martínez-Cáceres E, Borràs FE. (2012). Differential effects of monophosphoryl lipid A and cytokine cocktail as maturation stimuli of immunogenic and tolerogenic dendritic cells for immunotherapy. Vaccine, 30, 378–387.
  • Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA. (2006). In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J Control Release, 112, 26–34.
  • Rong Y, Qin X, Jin D, Lou W, Wu L, Wang D, Wu W, Ni X, Mao Z, Kuang T, Zang YQ, Qin X. (2012). A phase I pilot trial of MUC1-peptide-pulsed dendritic cells in the treatment of advanced pancreatic cancer. Clin Exp Med, 12, 173–180.
  • Sadanaga N, Nagashima H, Mashino K, Tahara K, Yamaguchi H, Ohta M, Fujie T, Tanaka F, Inoue H, Takesako K, Akiyoshi T, Mori M. (2001). Dendritic cell vaccination with MAGE peptide is a novel therapeutic approach for gastrointestinal carcinomas. Clin Cancer Res, 7, 2277–2284.
  • Saha A, Chatterjee SK, Foon KA, Celis E, Bhattacharya-Chatterjee M. (2007). Therapy of established tumors in a novel murine model transgenic for human carcinoembryonic antigen and HLA-A2 with a combination of anti-idiotype vaccine and CTL peptides of carcinoembryonic antigen. Cancer Res, 67, 2881–2892.
  • Saha A, Chatterjee SK. (2010). Combination of CTL-associated antigen-4 blockade and depletion of CD25 regulatory T cells enhance tumour immunity of dendritic cell-based vaccine in a mouse model of colon cancer. Scand J Immunol, 71, 70–82.
  • Sakakibara M, Kanto T, Hayakawa M, Kuroda S, Miyatake H, Itose I, Miyazaki M, Kakita N, Higashitani K, Matsubara T, Hiramatsu N, Kasahara A, Takehara T, Hayashi N. (2011). Comprehensive immunological analyses of colorectal cancer patients in the phase I/II study of quickly matured dendritic cell vaccine pulsed with carcinoembryonic antigen peptide. Cancer Immunol Immunother, 60, 1565–1575.
  • Sakakibara M, Kanto T, Inoue M, Kaimori A, Yakushijin T, Miyatake H, Itose I, Miyazaki M, Kuzushita N, Hiramatsu N, Takehara T, Kasahara A, Hayashi N. (2006). Quick generation of fully mature dendritic cells from monocytes with OK432, low-dose prostanoid, and interferon-alpha as potent immune enhancers. J Immunother, 29, 67–77.
  • Sarkar K, Goswami S, Roy S, Mallick A, Chakraborty K, Bose A, Baral R. (2010). Neem leaf glycoprotein enhances carcinoembryonic antigen presentation of dendritic cells to T and B cells for induction of anti-tumor immunity by allowing generation of immune effector/memory response. Int Immunopharmacol, 10, 865–874.
  • Schlosser E, Mueller M, Fischer S, Basta S, Busch DH, Gander B, Groettrup M. (2008). TLR ligands and antigen need to be coencapsulated into the same biodegradable microsphere for the generation of potent cytotoxic T lymphocyte responses. Vaccine, 26, 1626–1637.
  • Schott M, Feldkamp J, Lettmann M, Simon D, Scherbaum WA, Seissler J. (2001). Dendritic cell immunotherapy in a neuroendocrine pancreas carcinoma. Clin Endocrinol (Oxf), 55, 271–277.
  • Shrikhande SV, Barreto G, Koliopanos A. (2009). Pancreatic carcinogenesis: The impact of chronic pancreatitis and its clinical relevance. Indian J Cancer, 46, 288–296.
  • Sparano JA, Wang M, Zhao F, Stearns V, Martino S, Ligibel JA, Perez EA, Saphner T, Wolff AC, Sledge GW, Wood WC, Davidson NE. (2012). Race and hormone receptor-positive breast cancer outcomes in a randomized chemotherapy trial. J Natl Cancer Inst, 104, 406–414.
  • Steinman RM, Banchereau J. (2007). Taking dendritic cells into medicine. Nature, 449, 419–426.
  • Tamir A, Basagila E, Kagahzian A, Jiao L, Jensen S, Nicholls J, Tate P, Stamp G, Farzaneh F, Harrison P, Stauss H, George AJ, Habib N, Lechler RI, Lombardi G. (2007). Induction of tumor-specific T-cell responses by vaccination with tumor lysate-loaded dendritic cells in colorectal cancer patients with carcinoembryonic-antigen positive tumors. Cancer Immunol Immunother, 56, 2003–2016.
  • Tan G, Wang Z, Zhang X, Cai Z, Zhang J. (2011). Induction of CTLs by DCs pulsed with K-ras mutant peptide on the surface of nanoparticles in the treatment of pancreatic cancer. Oncol Rep, 26, 215–221.
  • Tavaré R, Sagoo P, Varama G, Tanriver Y, Warely A, Diebold SS, Southworth R, Schaeffter T, Lechler RI, Razavi R, Lombardi G, Mullen GE. (2011). Monitoring of in vivo function of superparamagnetic iron oxide labelled murine dendritic cells during anti-tumour vaccination. PLoS ONE, 6, e19662.
  • Toh HC, Wang WW, Chia WK, Kvistborg P, Sun L, Teo K, Phoon YP, Soe Y, Tan SH, Hee SW, Foo KF, Ong S, Koo WH, Zocca MB, Claesson MH. (2009). Clinical Benefit of Allogeneic Melanoma Cell Lysate-Pulsed Autologous Dendritic Cell Vaccine in MAGE-Positive Colorectal Cancer Patients. Clin Cancer Res, 15, 7726–7736.
  • Unger WW, van Beelen AJ, Bruijns SC, Joshi M, Fehres CM, van Bloois L, Verstege MI, Ambrosini M, Kalay H, Nazmi K, Bolscher JG, Hooijberg E, de Gruijl TD, Storm G, van Kooyk Y. (2012). Glycan-modified liposomes boost CD4+ and CD8+ T-cell responses by targeting DC-SIGN on dendritic cells. J Control Release, 160, 88–95.
  • Venkatesan P, Puvvada N, Dash R, Prashanth Kumar BN, Sarkar D, Azab B, Pathak A, Kundu SC, Fisher PB, Mandal M. (2011). The potential of celecoxib-loaded hydroxyapatite-chitosan nanocomposite for the treatment of colon cancer. Biomaterials, 32, 3794–3806.
  • von Bubnoff D, Zahn S, Wenzel J, Wilms H, Bieber T, Lüftl M. (2012). Indoleamine 2,3-dioxygenase expression in early keratocyte neoplasia of the lower lip correlates to the degree of cell atypia. Pathol Int, 62, 105–111.
  • Wang C, Zhuang Y, Zhang Y, Luo Z, Gao N, Li P, Pan H, Cai L, Ma Y. (2012). Toll-like receptor 3 agonist complexed with cationic liposome augments vaccine-elicited antitumor immunity by enhancing TLR3-IRF3 signaling and type I interferons in dendritic cells. Vaccine, 30, 4790–4799.
  • Weitz J, Koch M, Debus J, Höhler T, Galle PR, Büchler MW. (2005). Colorectal cancer. Lancet, 365, 153–165.
  • Whiteside TL. (2008). The tumor microenvironment and its role in promoting tumor growth. Oncogene, 27, 5904–5912.
  • Win KY, Feng SS. (2005). Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials, 26, 2713–2722.
  • Yang J, Li ZH, Zhou JJ, Chen RF, Cheng LZ, Zhou QB, Yang LQ. (2010). Preparation and antitumor effects of nanovaccines with MAGE-3 peptides in transplanted gastric cancer in mice. Chin J Cancer, 29, 359–364.
  • Yasuda T, Kamigaki T, Kawasaki K, Nakamura T, Yamamoto M, Kanemitsu K, Takase S, Kuroda D, Kim Y, Ajiki T, Kuroda Y. (2007). Superior anti-tumor protection and therapeutic efficacy of vaccination with allogeneic and semiallogeneic dendritic cell/tumor cell fusion hybrids for murine colon adenocarcinoma. Cancer Immunol Immunother, 56, 1025–1036.
  • Yen MC, Lin CC, Chen YL, Huang SS, Yang HJ, Chang CP, Lei HY, Lai MD. (2009). A novel cancer therapy by skin delivery of indoleamine 2,3-dioxygenase siRNA. Clin Cancer Res, 15, 641–649.
  • Zhang G, Liu WL, Zhang L, Wang JY, Kuang MH, Liu P, Lin YH, Dai SQ, Du J. (2011). Involvement of indoleamine 2,3-dioxygenase in impairing tumor-infiltrating CD8 T-cell functions in esophageal squamous cell carcinoma. Clin Dev Immunol, 2011, 384726.
  • Zhang Z, Guo Y, Feng SS. (2012). Nanoimmunotherapy: application of nanotechnology for sustained and targeted delivery of antigens to dendritic cells. Nanomedicine (Lond), 7, 1–4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.