835
Views
68
CrossRef citations to date
0
Altmetric
Review Article

The use of ultrasound to release chemotherapeutic drugs from micelles and liposomes

, &
Pages 16-42 | Received 02 Apr 2014, Accepted 08 Aug 2014, Published online: 09 Sep 2014

References

  • Thierry B. Drug nanocarriers and functional nanoparticles: applications in cancer therapy. Curr Drug Deliv 2009;6:391–403
  • Mozafari MR. Nanocarrier technologies: frontiers of nanotherapy. Dordrecht: Springer; 2006
  • Mozafari MR, Pardakhty A, Azarmi S, et al. Role of nanocarrier systems in cancer nanotherapy. J Liposome Res 2009;19:310–21
  • Pitt WG, Husseini GA. Ultrasound in drug and gene delivery. Adv Drug Deliv Rev 2008;60:109–56
  • Ulrich AS. Biophysical aspects of using liposomes as delivery vehicles. Biosci Rep 2002;22:129–50
  • Ferrara KW. Driving delivery vehicles with ultrasound. Adv Drug Deliv Rev 2008;60:1097–102
  • Lasic D. Liposomes: synthetic lipid microspheres serve as multipurpose vehicles for the delivery of drugs, genetic material and cosmetics. American Scientist 1992;80:20–31
  • Husseini GA, Pitt WG. Micelles and nanoparticles for ultrasonic drug and gene delivery. Adv Drug Deliv Rev 2008;60:1137–52
  • Blanco E, Kessinger CW, Sumer BD, Gao J. Multifunctional micellar nanomedicine for cancer therapy. Exp Biol Med (Maywood) 2009;234:123–31
  • Pitt WG, Husseini GA, Kherbeck LN. Ultrasound-triggered release from micelles. In: Alvarez-Lorenzo C, Concheiro A, eds. Smart materials for drug delivery, Vol. 1, Chapter 6. RSC Publishing; 2013:148–78
  • Siepmann J, Siegel R. Fundamentals and applications of controlled release drug delivery. New York: Springer; 2012
  • Sirsi SR, Borden MA. State-of-the-art materials for ultrasound-triggered drug delivery. Adv Drug Deliv Rev 2014;72C:3–14
  • Papagiannaros A, Demetzos C. Release advantages of a liposomal dendrimer-doxorubicin complex, over conventional liposomal formulation of doxorubicin. In: Mozafari MR, ed. Nanomaterials and nanosystems for biomedical applications. Dordrecht: Springer; 2007:135–44
  • Wooster R, Weber BL. Breast and ovarian cancer. N Engl J Med 2003;348:2339–47
  • Sharpe M, Easthope SE, Keating GM, Lamb HM. Polyethylene glycol-liposomal doxorubicin: a review of its use in the management of solid and haematological malignancies and AIDS-related Kaposi's sarcoma. Drugs 2002;62:2089–126
  • Gabizon AA. Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. Cancer Invest 2001;19:424–36
  • Gewirtz DA. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 1999;57:727–41
  • Chatterjee K, Zhang J, Honbo N, Karliner JS. Doxorubicin cardiomyopathy. Cardiology 2010;115:155–62
  • Chlebowski RT. Adriamycin (doxorubicin) cardiotoxicity: a review. West J Med 1979;131:364–8
  • Shi Y, Moon M, Dawood S, et al. Mechanisms and management of doxorubicin cardiotoxicity. Herz 2011;36:296–305
  • Allen TM, Hansen CB, De Menezes DEL. Pharmacokinetics of long-circulating liposomes. Adv Drug Deliv Rev 1995;16:267–84
  • Sutton D, Nasongkla N, Blanco E, Gao J. Functionalized micellar systems for cancer targeted drug delivery. Pharm Res 2007;24:1029–46
  • Wang S, Mi JB, Li YZ, et al. Pharmacokinetics and tissue distribution of iv injection of polyphase liposome-encapsulated cisplatin (KM-1) in rats. Acta Pharmacol Sin 2003;24:589–92
  • Forssen EA, Tokes ZA. Use of anionic liposomes for the reduction of chronic doxorubicin-induced cardiotoxicity. Proc Natl Acad Sci USA 1981;78:1873–7
  • Juliano RL, Stamp D, Mccullough N. Pharmacokinetics of liposome-encapsulated antitumor drugs and implications for therapy. Ann N Y Acad Sci 1978;308:411–25
  • Maurer N, Fenske DB, Cullis PR. Developments in liposomal drug delivery systems. Expert Opin Biol Ther 2001;1:923–47
  • Leighton TG. What is ultrasound? Prog Biophys Mol Biol 2007;93:3–83
  • Hall DO, Selfridge AR. Multi-frequency ultrasound therapy systems and methods. Google Patents. USA: Dynatronics Laser Corporation; 1995
  • Mitragotri S Kost J. Low-frequency sonophoresis: a review. Adv Drug Deliv Rev 2004;56:589–601
  • Liu Y, Miyoshi H, Nakamura M. Encapsulated ultrasound microbubbles: therapeutic application in drug/gene delivery. J Control Release 2006;114:89–99
  • Schroeder A, Kost J, Barenholz Y. Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes. Chem Phys Lipids 2009;162:1–16
  • Van Wamel A, Kooiman K, Harteveld M, et al. Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J Control Release 2006;112:149–55
  • Klibanov AL, Shevchenko TI, Raju BI, et al. Ultrasound-triggered release of materials entrapped in microbubble-liposome constructs: a tool for targeted drug delivery. J Control Release 2010;148:13–17
  • Frenkel V. Ultrasound mediated delivery of drugs and genes to solid tumors. Adv Drug Deliv Rev 2008;60:1193–208
  • Draper DO, Castel JC, Castel D. Rate of temperature increase in human muscle during 1 MHz and 3 MHz continuous ultrasound. J Orthop Sports Phys Ther 1995;22:142–50
  • Huber PE, Debus J. Tumor cytotoxicity in vivo and radical formation in vitro depend on the shock wave-induced cavitation dose. Radiat Res 2001;156:301–9
  • Huber PE, Jenne JW, Rastert R, et al. A new noninvasive approach in breast cancer therapy using magnetic resonance imaging-guided focused ultrasound surgery. Cancer Res 2001;61:8441–7
  • Lu XQ, Burdette EC, Bornstein BA, et al. Design of an ultrasonic therapy system for breast cancer treatment. Int J Hyperthermia 1996;12:375–99
  • Nyborg WL. Biological effects of ultrasound: development of safety guidelines. Part II: general review. Ultrasound Med Biol 2001;27:301–33
  • Underwood HR, Burdette EC, Ocheltree KB, Magin RL. A multi-element ultrasonic hyperthermia applicator with independent element control. Int J Hyperthermia 1987;3:257–67
  • Pitt WG, Husseini GA, Staples BJ. Ultrasonic drug delivery – a general review. Expert Opin Drug Deliv 2004;1:37–56
  • Saad AH, Hahn GM. Ultrasound enhances adriamycin toxicity in vitro. In: Chato JC, Diller TE, Diller KR, Roemer RB, eds. Heat transfer in bioengineering and medicine. New York: Am Soc Mech Eng. Press; 1987:28–31
  • Collis J, Manasseh R, Liovic P, et al. Cavitation microstreaming and stress fields created by microbubbles. Ultrasonics 2009;50:273–9
  • Marmottant P, Hilgenfeldt S. Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 2003;423:53–6
  • Nyborg WL. Ultrasonic microstreaming and related phenomena. Br J Cancer Suppl 1982;5:156–60
  • Brennen CE. Cavitation and bubble dynamics. New York: Oxford University Press; 1995
  • Furusawa Y, Hassan MA, Zhao QL, et al. Effects of therapeutic ultrasound on the nucleus and genomic DNA. Ultrason Sonochem 2014;21:2061–8
  • May DJ, Allen JS, Ferrara KW. Dynamics and fragmentation of thick-shelled microbubbles. IEEE Trans Ultrason Ferroelectr Freq Control 2002;49:1400–10
  • Rooney JA. Hemolysis near an ultrasonically pulsating gas bubble. Science 1970;169:869–71
  • Rooney JA. Ultrasound: its chemical, physical, and biological effects. Cambridge: VCH Publishers; 1988:74–96
  • Williams AR, Miller DL. Photometric detection of ATP release from human erythrocytes exposed to ultrasonically activated gas-filled pores. Ultrasound Med Biol 1980;6:251–6
  • Oerlemans C, Deckers R, Storm G, et al. Evidence for a new mechanism behind HIFU-triggered release from liposomes. J Control Release 2012;168:327–33
  • Deckers R, Moonen CT. Ultrasound triggered, image guided, local drug delivery. J Control Release 2010;148:25–33
  • Hernot S, Klibanov AL. Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 2008;60:1153–66
  • Husseini GA, Myrup GD, Pitt WG, et al. Factors affecting acoustically triggered release of drugs from polymeric micelles. J Control Release 2000;69:43–52
  • Husseini GA, Pitt WG. The use of ultrasound and micelles in cancer treatment. J Nanosci Nanotechnol 2008;8:2205–15
  • Hwang JH, Crum LA. Current status of clinical high-intensity focused ultrasound. 31st Annual International Conference of the IEEE EMBS; 2009
  • Yu T, Wang Z, Mason TJ. A review of research into the uses of low level ultrasound in cancer therapy. Ultrason Sonochem 2014;11:95–103
  • Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007;2:751–60
  • Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 2008;60:1615–26
  • Torchilin VP. Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 2007;24:1–16
  • Dua JS, Rana AC, Bhandari AK. Liposome: methods of preparation and applications. Int J Pharm Stud Res 2012;3:14–20
  • Frezard F. Liposomes: from biophysics to the design of peptide vaccines. Braz J Med Biol Res 1999;32:181–9
  • Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001;41:189–207
  • Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000;65:271–84
  • Danson S, Ferry D, Alakhov V, et al. Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br J Cancer 2004;90:2085–91
  • Gabizon A, Sulkes A, Peretz T, et al. Liposome-associated doxorubicin: preclinical pharmacology and exploratory clinical phase. In: Fidler IJ, Lopez-Berestein G, eds. Liposomes in the therapy of infectious diseases and cancer. New York: ARL; 1989:391–402
  • Hayama A, Yamamoto T, Yokoyama M, et al. Polymeric micelles modified by folate-PEG-lipid for targeted drug delivery to cancer cells in vitro. J Nanosci Nanotechnol 2008;8:3085–90
  • Kabanov AV. Polymer genomics: an insight into pharmacology and toxicology of nanomedicines. Adv Drug Deliv Rev 2006;58:1597–621
  • Treat J, Greenspan AR, Rahman A. Liposome-encapsulated doxorubicin. Preliminary results of phase-I and phase-II trials. In: Lopez-Berestein, G, Fidler IJ, eds. Liposomes in the therapy of infectious diseases and cancer. New York: ARL; 1989;353–65
  • Van Hoesel QG, Steerenberg PA, Crommelin DJ, et al. Reduced cardiotoxicity and nephrotoxicity with preservation of antitumor activity of doxorubicin entrapped in stable liposomes in the LOU/M Wsl rat. Cancer Res 1984;44:3698–705
  • Goyal PS, Aswal VK. Micellar structure and inter-micelle interactions in micellar solutions: results of small angle neutron scattering studies. Curr Sci 2001;80:353–65
  • Sudhölter EJR, Van DE, Langkruis GB, Engberts JBFN. Micelles. Structure and catalysis. Recueil des Travaux Chimiques des Pays-Bas 1980;99:73–82
  • Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv 2013;2013:340315 (1–15)
  • Kedar U, Phutane P, Shidhaye S, Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine 2010;6:714–29
  • Khan DR. The use of nanocarriers for drug delivery in cancer therapy. J Cancer Sci Ther 2010;2:058–62
  • Oerlemans C, Bult W, Bos M, et al. Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 2010;27:2569–89
  • Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. J Pharm Sci 2003;92:1343–55
  • Gaucher G, Dufresne MH, Sant VP, et al. Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 2005;109:169–88
  • Husseini GA, Pitt WG. Ultrasonic-activated micellar drug delivery for cancer treatment. J Pharm Sci 2009;98:795–811
  • Husseini GA, El-Fayoumi RI, O'neill KL, et al. DNA damage induced by micellar-delivered doxorubicin and ultrasound: comet assay study. Cancer Lett 2000;154: 211–16
  • Husseini GA, Rapoport NY, Christensen DA, et al. Kinetics of ultrasonic release of doxorubicin from pluronic P105 micelles. Colloids Surf 2002;24:253
  • Marin A, Sun H, Husseini GA, et al. Drug delivery in pluronic micelles: effect of high-frequency ultrasound on drug release from micelles and intracellular uptake. J Control Release 2002;84:39–47
  • Muniruzzaman MD, Marin A, Luo Y, et al. Intracellular uptake of pluronic copolymer: effects of the aggregation state. Colloids Surf B 2002;25:233–41
  • Munshi N, Rapoport N, Pitt WG. Ultrasonic activated drug delivery from Pluronic P-105 micelles. Cancer Lett 1997;118:13–19
  • Rapoport NY, Herron JN, Pitt WG, Pitina L. Micellar delivery of doxorubicin and its paramagnetic analog, ruboxyl, to HL-60 cells: effect of micelle structure and ultrasound on the intracellular drug uptake. J Control Release 1999;58:153–62
  • Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM. Polymeric systems for controlled drug release. Chem Rev 1999;99:3181–98
  • Ogris M, Brunner S, Schuller S, et al. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther 1999;6:595–605
  • Romberg B, Hennink WE, Storm G. Sheddable coatings for long-circulating nanoparticles. Pharm Res 2008;25:55–71
  • Pruitt JD, Husseini G, Rapoport N, Pitt WG. Stabilization of pluronic p-105 micelles with an interpenetrating network of n,n-diethylacrylamide. Macromolecules 2000;33:9306–9
  • Husseini GA, Christensen DA, Rapoport NY, Pitt WG. Ultrasonic release of doxorubicin from Pluronic P105 micelles stabilized with an interpenetrating network of N,N-diethylacrylamide. J Control Release 2002;83:303–5
  • Husseini GA, Diaz De La Rosa MA, Gabuji T, et al. Release of doxorubicin from unstabilized and stabilized micelles under the action of ultrasound. J Nanosci Nanotechnol 2007;7:1028–33
  • Zeng Y, Pitt WG. A polymeric micelle system with a hydrolysable segment for drug delivery. J Biomater Sci Polym 2006;17:591–604
  • Zeng Y, Pitt WG. Poly(ethylene oxide)-b-poly(n-isopropylacrylamide) nanoparticles with crosslinked cores as drug carriers. J Biomat Sci Polym 2005;16:371–80
  • Rapoport NY, Kennedy AM, Shea JE, et al. Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles. J Control Release 2009;138:268–76
  • Basile L, Pignatello R, Passirani C. Active targeting strategies for anticancer drug nanocarriers. Curr Drug Deliv 2012;9:255–68
  • Hasirci N. Micro and nano systems in biomedicine and drug delivery. In: Mozafari MR, ed. Nanomaterials and nanosystems for biomedical applications. Dordrecht: Springer; 2007:1–26
  • Bohmer MR, Klibanov AL, Tiemann K, et al. Ultrasound triggered image-guided drug delivery. Eur J Radiol 2009;70:242–53
  • Maruyama K, Ishida O, Takizawa T, Moribe K. Possibility of active targeting to tumor tissues with liposomes. Adv Drug Deliv Rev 1999;40:89–102
  • Torchilin V. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur J Pharm Biopharm 2009;71:431–44
  • Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 2007;32:962–90
  • Iakoubov LZ, Torchilin VP. A novel class of antitumor antibodies: nucleosome-restricted antinuclear autoantibodies (ANA) from healthy aged nonautoimmune mice. Oncol Res 1997;9:439–46
  • Torchilin VP, Lukyanov AN, Gao Z, Papahadjopoulos-Sternberg B. Immunomicelles: targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci USA 2003;100:6039–44
  • Iakoubov L, Rokhlin O, Torchilin V. Anti-nuclear autoantibodies of the aged reactive against the surface of tumor but not normal cells. Immunol Lett 1995;47:147–9
  • Iakoubov LZ, Torchilin VP. Nucleosome-releasing treatment makes surviving tumor cells better targets for nucleosome-specific anticancer antibodies. Cancer Detect Prev 1998;22:470–5
  • Lukyanov AN, Gao Z, Torchilin VP. Micelles from polyethylene glycol/phosphatidylethanolamine conjugates for tumor drug delivery. J Control Release 2003;91:97–102
  • Park JW, Kirpotin DB, Hong K, et al. Tumor targeting using anti-her2 immunoliposomes. J Control Release 2001;74:95–113
  • Husseini GA, Abdel-Jabbar NM, Mjalli FS, Pitt WG. Modeling and sensitivity analysis of acoustic release of Doxorubicin from unstabilized pluronic P105 using an artificial neural network model. Technol Cancer Res Treat 2007;6:49–56
  • Husseini GA, Diaz De La Rosa MA, Richardson ES, et al. The role of cavitation in acoustically activated drug delivery. J Control Release 2005;107:253–61
  • Silva R, Ferreira H, Little C, Cavaco-Paulo A. Effect of ultrasound parameters for unilamellar liposome preparation. Ultrason Sonochem 2010;17:628–32
  • Stevenson-Abouelnasr D, Husseini GA, Pitt WG. Further investigation of the mechanism of Doxorubicin release from P105 micelles using kinetic models. Colloids Surf B 2007;55:59–66
  • Husseini GA, Abdel-Jabbar NM, Mjalli FS, et al. Optimizing the use of ultrasound to deliver chemotherapeutic agents to cancer cells from polymeric micelles. J Franklin Inst 2011;348:1276–84
  • Ugarenko M, Chan CK, Nudelman A, et al. Development of pluronic micelle-encapsulated doxorubicin and formaldehyde-releasing prodrugs for localized anticancer chemotherapy. Oncol Res 2009;17:283–99
  • Zhang H, Xia H, Wang J, Li Y. High intensity focused ultrasound-responsive release behavior of PLA-b-PEG copolymer micelles. J Control Release 2009;139:31–9
  • Wang J, Pelletier M, Zhang H, et al. High-frequency ultrasound-responsive block copolymer micelle. Langmuir 2009;25:13201–5
  • Husseini GA, Stevenson-Abouelnasr D, Pitt WG, et al. Kinetics and thermodynamics of acoustic release of doxorubicin from non-stabilized polymeric micelles. Colloids Surf A 2010;359:8–24
  • Husseini GA, De La Rosa MAD, Alaqqad EO, et al. Kinetics of acoustic release of doxorubicin from stabilized and unstabilized micelles and the effect of temperature. J Franklin Inst 2011;348:125
  • Diaz De La Rosa MA, Husseini GA, Pitt WG. Comparing microbubble cavitation at 500 kHz and 70 kHz related to micellar drug delivery using ultrasound. Ultrasonics 2013;53:377–86
  • Diaz De La Rosa MA, Husseini GA, Pitt WG. Mathematical modeling of microbubble cavitation at 70 kHz and the importance of the subharmonic in drug delivery from micelles. Ultrasonics 2013;53:97–110
  • Husseini GA, Kherbeck L, Pitt WG, et al. Kinetics of ultrasonic drug delivery from targeted micelles. J Nanosci Nanotechnol 2014;14:1–6
  • Husseini GA, Velluto D, Kherbeck L, et al. Investigating the acoustic release of doxorubicin from targeted micelles. Colloids Surf B 2013;101:153–5
  • Rapoport N, Pitt WG, Sun H, Nelson JL. Drug delivery in polymeric micelles: from in vitro to in vivo. J Control Release 2003;91:85–95
  • Husseini GA, Mjalli FS, Pitt WG, Abdel-Jabbar N. Using artificial neural networks and model predictive control to optimize acoustically assisted Doxorubicin release from polymeric micelles. Technol Cancer Res Treat 2009;8:479–88
  • Diaz De La Rosa MA, Husseini GA, Pitt WG. Comparing microbubble cavitation at 500 kHz and 70 kHz related to micellar drug delivery using ultrasound. Ultrasonics 2012;53:377–86
  • Diaz De La Rosa MA, Husseini GA, Pitt WG. Mathematical modeling of microbubble cavitation at 70 kHz and the importance of the subharmonic in drug delivery from micelles. Ultrasonics 2012;53:97–110
  • Husseini GA, Pitt WG, Christensen DA, Dickinson DJ. Degradation kinetics of stabilized Pluronic micelles under the action of ultrasound. J Control Release 2009;138:45–8
  • Marin A, Muniruzzaman M, Rapoport N. Acoustic activation of drug delivery from polymeric micelles: effect of pulsed ultrasound. J Control Release 2001;71:239–49
  • Marin A, Muniruzzaman M, Rapoport N. Mechanism of the ultrasonic activation of micellar drug delivery. J Control Release 2001;75:69–81
  • Husseini GA, Runyan CM, Pitt WG. Investigating the mechanism of acoustically activated uptake of drugs from Pluronic micelles. BMC Cancer 2002;2:20
  • Pruitt JD, Pitt WG. Sequestration and ultrasound-induced release of doxorubicin from stabilized Pluronic P105 micelles. Drug Deliv 2002;9:253–8
  • Rapoport N, Marin A, Luo Y, et al. Intracellular uptake and trafficking of Pluronic micelles in drug-sensitive and MDR cells: effect on the intracellular drug localization. J Pharm Sci 2002;91:157–70
  • Husseini GA, O'Neill KL, Pitt WG. The comet assay to determine the mode of cell death for the ultrasonic delivery of doxorubicin to human leukemia (HL-60 Cells) from Pluronic P105 micelles. Technol Cancer Res Treat 2005;4:707–11
  • Howard B, Gao A, Lee S-W, et al. Ultrasound-enhanced chemotherapy of drug-resistant breast cancer tumors by micellar-encapsulated paclitaxel. Am J Drug Deliv 2006;4:97–104
  • Loverock P, Ter Haar G, Ormerod MG, Imrie PR. The effect of ultrasound on the cytotoxicity of adriamycin. Br J Radiol 1990;63:542–6
  • Carter SK. Adriamycin – a review. J Natl Cancer Inst 1975;55:1265–74
  • Miura S, Tachibana K, Okamoto T, Saku K. In vitro transfer of antisense oligodeoxynucleotides into coronary endothelial cells by ultrasound. Biochem Biophys Res Commun 2002;298:587–90
  • Ogawa K, Tachibana K, Uchida T, et al. High-resolution scanning electron microscopic evaluation of cell-membrane porosity by ultrasound. Med Electron Microsc 2001;34:249–53
  • Sivakumar M, Tachibana K, Pandit AB, et al. Transdermal drug delivery using ultrasound-theory, understanding and critical analysis. Cell Mol Biol (Noisy-le-grand) 2005;51:OL767–84
  • Tachibana K, Uchida T, Ogawa K, et al. Induction of cell-membrane porosity by ultrasound. Lancet 1999;353:1409
  • Tachibana K, Uchida T, Tamura K, et al. Enhanced cytotoxic effect of Ara-C by low intensity ultrasound to HL-60 cells. Cancer Lett 2000;149:189–94
  • Taniyama Y, Tachibana K, Hiraoka K, et al. Development of safe and efficient novel nonviral gene transfer using ultrasound: enhancement of transfection efficiency of naked plasmid DNA in skeletal muscle. Gene Ther 2002;9:372–80
  • Taniyama Y, Tachibana K, Hiraoka K, et al. Local delivery of plasmid DNA into rat carotid artery using ultrasound. Circulation 2002;105:1233–9
  • Yamashita N, Tachibana K, Ogawa K, et al. Scanning electron microscopic evaluation of the skin surface after ultrasound exposure. Anat Rec 1997;247:455–61
  • Saito K, Miyake K, Mcneil PL, et al. Plasma membrane disruption underlies injury of the corneal endothelium by ultrasound. Exp Eye Res 1999;68:431–7
  • Prentice P, Cuschierp A, Dholakia K, et al. Membrane disruption by optically controlled microbubble cavitation. Nat Phys 2005;1:107–10
  • Stringham SB, Murray BK, O’neill KL, et al. Mechanism of targeted chemotherapeutic delivery using ultrasound. CA, USA: 96th Annual Meeting of the American Association for Cancer Research Anaheim; 2005
  • Stringham SB, Viskovska MA, Richardson ES, et al. Over-pressure suppresses ultrasonic-induced drug uptake. Ultrasound Med Biol 2009;35:409–15
  • Bailey MR, Couret LN, Sapozhnikov OA, et al. Use of overpressure to assess the role of bubbles in focused ultrasound lesion shape in vitro. Ultrasound Med Biol 2001;27:695–708
  • Richardson ES, Pitt WG, Woodbury DJ. The role of cavitation in liposome formation. Biophys J 2007;93:4100–7
  • Schlicher RK, Hutcheson JD, Radhakrishna H, et al. Changes in cell morphology due to plasma membrane wounding by acoustic cavitation. Ultrasound Med Biol 2010;36:677–92
  • Schlicher RK, Radhakrishna H, Tolentino TP, et al. Mechanism of intracellular delivery by acoustic cavitation. Ultrasound Med Biol 2006;32L:915–24
  • Zhou Y, Kumon RE, Cui J, Deng CX. The size of sonoporation pores on the cell membrane. Ultrasound Med Biol 2009;35:1756–60
  • Meijering BD, Juffermans LJ, Van Wamel A, et al. Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation. Circ Res 2009;104:679–87
  • Hauser J, Ellisman M, Steinau HU, et al. Ultrasound enhanced endocytotic activity of human fibroblasts. Ultrasound Med Biol 2009;35:2084–92
  • Chen L, Sha X, Jiang X, et al. Pluronic P105/F127 mixed micelles for the delivery of docetaxel against Taxol-resistant non-small cell lung cancer: optimization and in vitro, in vivo evaluation. Int J Nanomedicine 2013;8:73–84
  • Nelson JL. Ultrasonically enhanced drug delivery of doxorubicin in vivo from stabilized pluronic micelle carriers. Provo, UT, Brigham: Young University; 2002
  • Nelson JL, Roeder BL, Carmen JC, et al. Ultrasonically activated chemotherapeutic drug delivery in a rat model. Cancer Res 2002;62:7280–3
  • Rapoport NY, Christensen DA, Fain HD, et al. Ultrasound-triggered drug targeting of tumors in vitro and in vivo. Ultrasonics 2004;42:943–50
  • Gao Z, Fain HD, Rapoport N. Ultrasound-enhanced tumor targeting of polymeric micellar drug carriers. Mol Pharm 2004;1:317–30
  • Gao ZG, Fain HD, Rapoport N. Controlled and targeted tumor chemotherapy by micellar-encapsulated drug and ultrasound. J Control Release 2005;102:203–22
  • Myhr G, Moan J. Synergistic and tumour selective effects of chemotherapy and ultrasound treatment. Cancer Lett 2006;232:206–13
  • Staples BJ. Pharmacokinetics of ultrasonically-released, micelle-encapsulated doxorubicin in the rat model and its effect on tumor growth. Provo. UT: Brigham Young University; 2007
  • Staples BJ, Roeder BL, Husseini GA, et al. Role of frequency and mechanical index in ultrasonic-enhanced chemotherapy in rats. Cancer Chemother Pharmacol 2009;64:593–600
  • Staples BJ, Pitt WG, Roeder BL. Distribution of doxorubicin in rats undergoing ultrasonic drug delivery. J Pharm Sci 2010;99:3122–31
  • Gao Z, Kennedy AM, Christensen DA, Rapoport NY. Drug-loaded nano/microbubbles for combining ultrasonography and targeted chemotherapy. Ultrasonics 2008;48:260–70
  • Hasanzadeh H, Mokhtari-Dizaji M, Bathaie SZ, Hassan ZM. Effect of local dual frequency sonication on drug distribution from polymeric nanomicelles. Ultrason Sonochem 2011;18:1165–71
  • Staples BJ, Roeder BL, Pitt WG. Quantification of doxorubicin concentration in rat tissues using polymeric micelles in ultrasonic-drug delivery. Pittsburgh, USA: Annual Meeting of the Society for Biomaterials; 2006
  • Mozafari MR, Khosravi-Darani K. An overview of liposome-derived nanocarrier technologies. In: Mozafari MR, ed. Nanomaterials and nanosystems for biomedical applications. Dordrecht: Springer; 2007:113–23
  • Sipai ABM, Yadav V, Mamatha Y, Prasanth VV. Liposomes: an Overview. J Pharm Sci Innov 2012;1:13–21
  • Pinheiro M, Lucio M, Lima JL, Reis S. Liposomes as drug delivery systems for the treatment of TB. Nanomedicine (Lond) 2011;6:1413–28
  • Barenholz Y. Amphipathic weak base loading into preformed liposomes having a transmembrane ammonium ion gradient: from the bench to approved doxil. In: Gregoriadis G, ed. Liposome technology. Volume II. Entrapment of drugs and other materials into liposomes. New York: Informa Healthcare; 2006:1–25
  • Gabizon A, Price DC, Huberty J, et al. Effect of liposome composition and other factors on the targeting of liposomes to experimental tumors: biodistribution and imaging studies. Cancer Res 1990;50:6371–8
  • Willis M, Forssen E. Ligand-targeted liposomes. Adv Drug Deliv Rev 1998;29:249–71
  • Kirby C, Clarke J, Gregoriadis G. Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem J 1980;186:591–8
  • Lee KD, Hong K, Papahadjopoulos D. Recognition of liposomes by cells: in vitro binding and endocytosis mediated by specific lipid headgroups and surface charge density. Biochem Biophys Acta 1992;1103:185–97
  • Banno Y, Ohki K, Morita T, et al. Involvement of the membrane fluidity of lactosylceramide-targeted liposomes in their intrahepatic uptake. Biochem Int 1986;12:865–71
  • Emanuel N, Kedar E, Bolotin EM, et al. Preparation and characterization of doxorubicin-loaded sterically stabilized immunoliposomes. Pharm Res 1996;13:352–9
  • Mori A, Klibanov AL, Torchilin VP, Huang L. Influence of the steric barrier activity of amphipathic poly(ethyleneglycol) and ganglioside GM1 on the circulation time of liposomes and on the target binding of immunoliposomes in vivo. FEBS Lett 1991;284:263–6
  • Andresen TL, Jensen SS, Jorgensen K. Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog Lipid Res 2005;44:68–97
  • Papahadjopoulos D, Allen TM, Gabizon A, et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA 1991;88:11460–4
  • Allen TM. Long-circulating (sterically stabilized) liposomes for targeted drug delivery. Trends Pharmacol Sci 1994;15:215–20
  • Lu WL, Qi XR, Zhang Q, et al. A pegylated liposomal platform: pharmacokinetics, pharmacodynamics, and toxicity in mice using doxorubicin as a model drug. J Pharmacol Sci 2004;95:381–9
  • Lin HY, Thomas JL. PEG-Lipids and oligo(ethylene glycol) surfactants enhance the ultrasonic permeabilizability of liposomes. Langmuir 2003;19:1098–105
  • Park YS. Tumor-directed targeting of liposomes. Biosci Rep 2002;22:267–81
  • Huang SL. Liposomes in ultrasonic drug and gene delivery. Adv Drug Deliv Rev 2008;60:1167–76
  • Huang SL, Macdonald RC. Acoustically active liposomes for drug encapsulation and ultrasound-triggered release. Biochem Biophys Acta 2004;1665:134–41
  • Lattin JR, Pitt WG, Belnap DM, Husseini GA. Ultrasound-induced calcein release from eLiposomes. Ultrasound Med Biol 2012;38:2163–73
  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 2005;4:145–60
  • Javadi M, Pitt WG, Belnap DM, et al. Encapsulating nanoemulsions inside eLiposomes for ultrasonic drug delivery. Langmuir 2012;28:14720–9
  • Javadi M, Pitt WG, Tracy C, et al. Ultrasonic gene and drug delivery using eLiposomes. J Control Release 2013;167:92–100
  • Lattin JR, Belnap DM, Pitt WG. Formation of eLiposomes as a drug delivery vehicle. Colloids Surf B 2012;89:93–100
  • Lin CY, Javadi M, Belnap DM, et al. Ultrasound sensitive eLiposomes containing doxorubicin for drug targeting therapy. Nanomedicine 2014;10:67–76
  • Sheeran PS, Dayton PA. Improving the performance of phase-change perfluorocarbon droplets for medical ultrasonography: current progress, challenges, and prospects. Scientifica 2014; 2014:579684 (1–24)
  • Ta T, Porter TM. Thermosensitive liposomes for localized delivery and triggered release of chemotherapy. J Control Release 2013;169:112–25
  • Barenholz Y. Cholesterol and other membrane active sterols: from membrane evolution to “rafts”. Prog Lipid Res 2002;41:1–5
  • Jorgensen K, Mouritsen OG. Phase separation dynamics and lateral organization of two-component lipid membranes. Biophys J 1995;69:942–54
  • Yatvin MB, Weinstein JN, Dennis WH, Blumenthal R. Design of liposomes for enhanced local release of drugs by hyperthermia. Science 1978;202:1290–3
  • Barenholz Y, Cevc G. Structure and properties of membranes in physical chemistry of biological surfaces. New York: Marcel Dekker; 2000
  • Cohen-Levi D. Ultrasound for targeted delivery of cytotoxic drugs from liposomes. Beer Sheva, Israel: Ben Gurion University; 2000
  • Dromi S, Frenkel V, Luk A, et al. Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin Cancer Res 2007;13:2722–7
  • Schroeder A, Avnir Y, Weisman S, et al. Controlling liposomal drug release with low frequency ultrasound: mechanism and feasibility. Langmuir 2007;23:4019–25
  • Chen D, Wu J. An in vitro feasibility study of controlled drug release from encapsulated nanometer liposomes using high intensity focused ultrasound. Ultrasonics 2010;50:744–9
  • Evjen TJ, Nilssen EA, Rognvaldsson S, et al. Distearoylphosphatidylethanolamine-based liposomes for ultrasound-mediated drug delivery. Eur J Pharm Biopharm 2010;75:327–33
  • Evjen TJ, Nilssen EA, Barnert S, et al. Ultrasound-mediated destabilization and drug release from liposomes comprising dioleoylphosphatidylethanolamine. Eur J Pharm Sci 2011;42:380–6
  • Ninomiya K, Kawabata S, Tashita H, Shimizu N. Ultrasound-mediated drug delivery using liposomes modified with a thermosensitive polymer. Ultrason Sonochem 2014;21:310–16
  • Lin HY Thomas JL. Factors affecting responsivity of unilamellar liposomes to 20 kHz ultrasound. Langmuir 2004;20:6100–6
  • Evjen TJ, Hupfeld S, Barnert S, et al. Physicochemical characterization of liposomes after ultrasound exposure – mechanisms of drug release. J Pharm Biomed Anal 2013;78–79:118–22
  • Singh R, Husseini GA, Pitt WG. Phase transitions of nanoemulsions using ultrasound: experimental observations. Ultrason Sonochem 2012;19:1120–5
  • Pitt WG, Singh RN, Perez KX, et al. Phase transitions of perfluorocarbon nanoemulsion induced with ultrasound: a mathematical model. Ultrason Sonochem 2014;21:879–91
  • Lentacker I, Geers B, Demeester J, et al. Design and evaluation of doxorubicin-containing microbubbles for ultrasound-triggered doxorubicin delivery: cytotoxicity and mechanisms involved. Mol Ther 2010;18:101–8
  • Ueno Y, Sonoda S, Suzuki R, et al. Combination of ultrasound and bubble liposome enhance the effect of doxorubicin and inhibit murine osteosarcoma growth. Cancer Biol Ther 2011;12:270–7
  • Escoffre JM, Mannaris C, Geers B, et al. Doxorubicin liposome-loaded microbubbles for contrast imaging and ultrasound-triggered drug delivery. IEEE Trans Ultrason Ferroelectr Freq Control 2013;60:78–87
  • Afadzi M, Strand SP, Nilssen EA, et al. Mechanisms of the ultrasound-mediated intracellular delivery of liposomes and dextrans. IEEE Trans Ultrason Ferroelectr Freq Control 2013;60:21–33
  • Yan F, Li L, Deng Z, et al. Paclitaxel-liposome-microbubble complexes as ultrasound-triggered therapeutic drug delivery carriers. J Control Release 2013;166:246–55
  • Chen CC, Wu SY, Finan JD, et al. An experimental study on the stiffness of size-isolated microbubbles using atomic force microscopy. IEEE Trans Ultrason Ferroelectr Freq Control 2013;60:524–34
  • Shih CP, Chen HC, Chen HK, et al. Ultrasound-aided microbubbles facilitate the delivery of drugs to the inner ear via the round window membrane. J Control Release 2013;167:167–74
  • Li P, Zheng Y, Ran H, et al. Ultrasound triggered drug release from 10-hydroxycamptothecin-loaded phospholipid microbubbles for targeted tumor therapy in mice. J Control Release 2012;162:349–54
  • Lindner JR. Microbubbles in medical imaging: current applications and future directions. Nat Rev Drug Discov 2004;3:527–32
  • Krupka TM, Solorio L, Wilson RE, et al. Formulation and characterization of echogenic lipid-Pluronic nanobubbles. Mol Pharm 2009;7:49–59
  • Endo-Takahashi Y, Negishi Y, Nakamura A, et al. pDNA-loaded Bubble liposomes as potential ultrasound imaging and gene delivery agents. Biomaterials 2013;34:2807–13
  • Yuh EL, Shulman SG, Mehta SA, et al. Delivery of systemic chemotherapeutic agent to tumors by using focused ultrasound: study in a murine model. Radiology 2005;234:431–7
  • Frenkel V, Etherington A, Greene M, et al. Delivery of liposomal doxorubicin (Doxil) in a breast cancer tumor model: investigation of potential enhancement by pulsed-high intensity focused ultrasound exposure. Acad Radiol 2006;13:469–79
  • Pitt WG, Husseini GA, Roeder BL, et al. Preliminary results of combining low frequency low intensity ultrasound and liposomal drug delivery to treat tumors in rats. J Nanosci Nanotechnol 2011;11:1866–70
  • Gabizon A, Martin F. Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Drugs 1997;54:15–21
  • Gabizon AA, Barenholz Y, Bialer M. Prolongation of the circulation time of doxorubicin encapsulated in liposomes containing a polyethylene glycol-derivatized phospholipid: pharmacokinetic studies in rodents and dogs. Pharm Res 1993;10:703–8
  • Working PK, Newman MS, Huang SK, et al. Pharmacokinetics, biodistribution and therapeutic efficacy of doxorubicin encapsulated in Stealth® liposomes (Doxil®). J Liposome Res 1994;4:667–87
  • Working PK, Dayan AD. Pharmacological-toxicological expert report. CAELYX. (Stealth liposomal doxorubicin HCl). Hum Exp Toxicol 1996;15:751–85
  • Working PK, Newman MS, Sullivan T, Yarrington J. Reduction of the cardiotoxicity of doxorubicin in rabbits and dogs by encapsulation in long-circulating pegylated liposomes. J Pharmacol Exp Ther 1999;289:1128–33
  • Treat LH, Mcdannold N, Vykhodtseva N, et al. Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. Int J Cancer 2007;121:901–7
  • Nhan T, Burgess A, Cho EE, et al. Drug delivery to the brain by focused ultrasound induced blood-brain barrier disruption: quantitative evaluation of enhanced permeability of cerebral vasculature using two-photon microscopy. J Control Release 2013;172:274–80
  • Aryal M, Vykhodtseva N, Zhang Y-Z, et al. Multiple treatments with liposomal doxorubicin and ultrasound-induced disruption of blood-tumor and blood-brain barriers improve outcomes in a rat glioma model. J Control Release 2013;169:103–11
  • Evjen TJ, Hagtvet E, Moussatov A, et al. In vivo monitoring of liposomal release in tumours following ultrasound stimulation. Eur J Pharm Biopharm 2013;84:526–31
  • Rizzitelli S, Giustetto P, Boffa C. In vivo MRI visualization of release from liposomes triggered by local application of pulsed low-intensity non-focused ultrasound. Nanomedicine 2014;21:310–16
  • Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 2013;65:36–48
  • Duggan ST, Keating GM. Pegylated liposomal doxorubicin: a review of its use in metastatic breast cancer, ovarian cancer, multiple myeloma and AIDS-related Kaposi's sarcoma. Drugs 2011;71:2531–58
  • Perez AT, Domenech GH, Frankel C, Vogel CL. Pegylated liposomal doxorubicin (Doxil) for metastatic breast cancer: the Cancer Research Network, Inc., experience. Cancer Invest 2002;2:22–9
  • Chou HH, Wang KL, Chen CA, et al. Pegylated liposomal doxorubicin (Lipo-Dox) for platinum-resistant or refractory epithelial ovarian carcinoma: a Taiwanese gynecologic oncology group study with long-term follow-up. Gynecol Oncol 2006;101:423–8
  • Shields AF, Lange LM, Zalupski MM. Phase II study of liposomal doxorubicin in patients with advanced colorectal cancer. Am J Clin Oncol 2001;24:96–8
  • Mazurchuk R, Glaves D, Raghavan D. Magnetic resonance imaging of response to chemotherapy in orthotopic xenografts of human bladder cancer. Clin Cancer Res 1997;3:1635–41
  • Deng L, Ke X, He Z, et al. A MSLN-targeted multifunctional nanoimmunoliposome for MRI and targeting therapy in pancreatic cancer. Int J Nanomedicine 2012;7:5053–65
  • Soloman R, Gabizon AA. Clinical pharmacology of liposomal anthracyclines: focus on pegylated liposomal Doxorubicin. Clin Lymphoma Myeloma 2008;8:21–32
  • Vail DM, Amantea MA, Colbern GT, et al. Pegylated liposomal doxorubicin: proof of principle using preclinical animal models and pharmacokinetic studies. Semin Oncol 2004;31:16–35
  • Harrington KJ, Lewanski C, Northcote AD, et al. Phase II study of pegylated liposomal doxorubicin (Caelyx) as induction chemotherapy for patients with squamous cell cancer of the head and neck. Eur J Cancer 2001;37:2015–22
  • Gordon AN, Granai CO, Rose PG, et al. Phase II study of liposomal doxorubicin in platinum- and paclitaxel-refractory epithelial ovarian cancer. J Clin Oncol 2000;18:3093–100
  • Johnston SR, Gore ME. Caelyx: phase II studies in ovarian cancer. Eur J Cancer 2001;37:S8–14
  • Kudoh K, Takano M, Kouta H, et al. Effects of bevacizumab and pegylated liposomal doxorubicin for the patients with recurrent or refractory ovarian cancers. Gynecol Oncol 2011;122:233–7
  • Muggia FM, Hainsworth JD, Jeffers S, et al. Phase II study of liposomal doxorubicin in refractory ovarian cancer: antitumor activity and toxicity modification by liposomal encapsulation. J Clin Oncol 1997;15:987–93
  • Thigpen JT, Aghajanian CA, Alberts DS, et al. Role of pegylated liposomal doxorubicin in ovarian cancer. Gynecol Oncol 2005;96:10–18
  • Hollis CP, Weiss HL, Leggas M, et al. Biodistribution and bioimaging studies of hybrid paclitaxel nanocrystals: lessons learned of the EPR effect and image-guided drug delivery. J Control Release 2013;172:12–21

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.