435
Views
30
CrossRef citations to date
0
Altmetric
Review Article

Radiolabelled nanoparticles: novel classification of radiopharmaceuticals for molecular imaging of cancer

, , , &
Pages 91-101 | Received 13 Dec 2014, Accepted 02 May 2015, Published online: 10 Jun 2015

References

  • Yang Z, Liu Z, Allaker R, et al. A review of nanoparticle functionality and toxicity on the central nervous system. J Roy Soc Interface 2010;7:S411–22
  • Rossin R, Pan D, Qi K, et al. 64Cu-labeled folate-conjugated shell cross-linked nanoparticles for tumor imaging and radiotherapy: synthesis, radiolabeling, and biologic evaluation. J Nucl Med 2005;46:1210–18
  • Pan D, Lanza GM, Wickline SA, Caruthers SD. Nanomedicine: perspective and promises with ligand-directed molecular imaging. Eur J Radiol 2009;70:274–85
  • Assadi M, Nabipour I. The role of nanotechnology in nuclear medicine as a limb of molecular medicine with emphasis on medical roadmap of Iran. In: International congress of nuclear medicine and molecular imaging, Iran; 2009
  • Cai W, Chen X. Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 2008;49:113S–28S
  • Chou LY, Ming K, Chan WC. Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev 2011;40:233–45
  • Bassecoulard E, Lelu A, Zitt M. Mapping nanosciences by citation flows: a preliminary analysis. Scientometrics 2007;70:859–80
  • Sahoo S, Parveen S, Panda J. The present and future of nanotechnology in human health care. Nanomed Nanotechnol Biol Med 2007;3:20–31
  • Karunaratne DN. Nanotechnology in medicine. J Nat Sci Found Sri Lanka 2007;35:149–52
  • Roco MC, Bainbridge WS. Societal implications of nanoscience and nanotechnology: maximizing human benefit. J Nanopart Res; 2005;7:1–13
  • de Barros AB, Tsourkas A, Saboury B, et al. Emerging role of radiolabeled nanoparticles as an effective diagnostic technique. EJNMMI Res 2012;2:39
  • McDevitt MR, Chattopadhyay D, Kappel BJ, et al. Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med 2007;48:1180–9
  • Xia Y, Xiong Y, Lim B, Skrabalak SE. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 2009;48:60–103
  • Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007;2:751–60
  • Kim BY, Rutka JT, Chan WC. Nanomedicine. N Engl J Med 2010;363:2434–43
  • Cho K, Wang X, Nie S, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 2008;14:1310–16
  • Morales-Avila E, Ferro-Flores G, Ocampo-García BE, de María Ramírez F. Radiolabeled nanoparticles for molecular imaging. In: Bernhard S, ed. Molecular imaging. InTech; 2012. Available from: http://www.intechopen.com/books/molecular-imaging/radiolabeled-nanoparticles-for-molecular-imaging
  • Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005;5:161–71
  • Lammers T, Hennink W, Storm G. Tumour-targeted nanomedicines: principles and practice. Br J Cancer 2008;99:392–7
  • Espina V1, Wulfkuhle J, Calvert VS, et al. Reverse-phase protein microarrays for theranostics and patient tailored therapy. Methods Mol Biol 2008; 441:113–28
  • Wong JY. Systemic targeted radionuclide therapy: potential new areas. Int J Radiat Oncol Biol Phys 2006;66:S74–82
  • Mitra A, Nan A, Line BR, Ghandehari H. Nanocarriers for nuclear imaging and radiotherapy of cancer. Curr Pharm Design 2006;12:4729–49
  • Hamoudeh M, Kamleh MA, Diab R, Fessi H. Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv Drug Del Rev 2008;60:1329–46
  • Carlsson J, Forssell Aronsson E, Hietala S-O, et al. Tumour therapy with radionuclides: assessment of progress and problems. Radiother Oncol 2003;66:107–17
  • Reilly RM, Kiarash R, Cameron RG, et al. 111In-labeled EGF is selectively radiotoxic to human breast cancer cells overexpressing EGFR. J Nucl Med 2000;41:429–38
  • Wiwanitkit V. Glomerular pore size corresponding to albumin molecular size, an explanation for underlying structural pathology leading to albuminuria at nanolevel. Renal Failure 2006;28:101
  • Cai W, Chen X. Nanoplatforms for targeted molecular imaging in living subjects. Small 2007;3:1840–54
  • Caruthers SD, Wickline SA, Lanza GM. Nanotechnological applications in medicine. Curr Opin Biotechnol 2007;18:26–30
  • Debbage P, Jaschke W. Molecular imaging with nanoparticles: giant roles for dwarf actors. Histochem Cell Biol 2008;130:845–75
  • Douma K, Prinzen L, Slaaf DW, et al. Nanoparticles for optical molecular imaging of atherosclerosis. Small 2009;5:544–57
  • Minchin RF, Martin DJ. Minireview: nanoparticles for molecular imaging—an overview. Endocrinology 2010;151:474–81
  • Gundogdu E, Senyigit Z, Ilem-Ozdemir D. Nanomedicine for the diagnosis and treatment of cardiovascular disease, current status and future perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2009;1:149–55
  • Godin B, Sakamoto JH, Serda RE, et al. Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends Pharmacol Sci 2010;31:199–205
  • Hultborn K, Larsson L-G, Ragnhult I. The lymph drainage from the breast to the axillary and parasternal lymph nodes, studied with the aid of colloidal AU198. Acta Radiol [Old Series] 1955;43:52–64
  • Hong H, Zhang Y, Sun J, Cai W. Molecular imaging and therapy of cancer with radiolabeled nanoparticles. Nano Today 2009;4:399–413
  • DeNardo SJ, DeNardo GL, Miers LA, et al. Development of tumor targeting bioprobes (111In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy. Clin Cancer Res 2005;11:7087s–92s
  • DeNardo SJ, DeNardo GL, Natarajan A, et al. Thermal dosimetry predictive of efficacy of 111In-ChL6 nanoparticle AMF-induced thermoablative therapy for human breast cancer in mice. J Nucl Med 2007;48:437–44
  • Natarajan A, Gruettner C, Ivkov R, et al. NanoFerrite particle based radioimmunonanoparticles: binding affinity and in vivo pharmacokinetics. Bioconjug Chem 2008;19:1211–18
  • Natarajan A, Xiong C-Y, Gruettner C, et al. Development of multivalent radioimmunonanoparticles for cancer imaging and therapy. Cancer Biother Radiopharm 2008;23:82–91
  • Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer 2002;2:91–100
  • Cai W, Chen X. Anti-angiogenic cancer therapy based on integrin v3 antagonism. Anti-Cancer Agents Med Chem 2006;6:407–28
  • Cai W, Niu G, Chen X. Multimodality imaging of the HER-kinase axis in cancer. Eur J Nucl Med Mol Imag 2008;35:186–208
  • Hu G, Lijowski M, Zhang H, et al. Imaging of Vx-2 rabbit tumors with ανβ3-integrin-targeted 111In nanoparticles. Int J Cancer 2007;120:1951–7
  • Dooms G, Hricak H, Moseley M, et al. Characterization of lymphadenopathy by magnetic resonance relaxation times: preliminary results. Radiology 1985;155:691–7
  • Hirsch LR, Gobin AM, Lowery AR, et al. Metal nanoshells. Ann Biomed Eng 2006;34:15–22
  • Huang X, Qian W, El-Sayed IH, El-Sayed MA. The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy. Lasers Surg Med 2007;39:747–53
  • Schwartz JA, Shetty AM, Price RE, et al. Feasibility study of particle-assisted laser ablation of brain tumors in orthotopic canine model. Cancer Res 2009;69:1659–67
  • Hong H, Gao T, Cai W. Molecular imaging with single-walled carbon nanotubes. Nano Today 2009;4:252–61
  • Balasubramanian K, Burghard M. Chemically functionalized carbon nanotubes. Small 2005;1:180–92
  • Lacerda L, Bianco A, Prato M, Kostarelos K. Carbon nanotube cell translocation and delivery of nucleic acids in vitro and in vivo. J Mater Chem 2008;18:17–22
  • Wang H, Wang J, Deng X, et al. Biodistribution of carbon single-wall carbon nanotubes in mice. J Nanosci Nanotechnol 2004;4:1019–24
  • Singh R, Pantarotto D, Lacerda L, et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Nat Acad Sci USA 2006;103:3357–62
  • Woodward JD, Kennel SJ, Mirzadeh S, et al. In vivo SPECT/CT imaging and biodistribution using radioactive Cd125mTe/ZnS nanoparticles. Nanotechnology 2007;18:175103
  • Kennel SJ, Woodward JD, Rondinone AJ, et al. The fate of MAb-targeted Cd125m Te/ZnS nanoparticles in vivo. Nucl Med Biol 2008;35:501–14
  • Chatziioannou AF. Instrumentation for molecular imaging in preclinical research: micro-PET and Micro-SPECT. Proc Am Thorac Soc 2005;2:533–6
  • Guerrero S, Herance JR, Rojas S, et al. Synthesis and in vivo evaluation of the biodistribution of a 18F-labeled conjugate gold-nanoparticle-peptide with potential biomedical application. Bioconjug Chem 2012;23:399–408
  • Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 2003;17:545–80
  • Baker M. Whole-animal imaging: the whole picture. Nature 2010;463:977–80
  • Pichler BJ, Kolb A, Nägele T, Schlemmer H-P. PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med 2010;51:333–6
  • Herzog H, Pietrzyk U, Shah NJ, Ziemons K. The current state, challenges and perspectives of MR-PET. Neuroimage 2010;49:2072–82
  • Wehrl HF, Judenhofer MS, Wiehr S, Pichler BJ. Pre-clinical PET/MR: technological advances and new perspectives in biomedical research. Eur J Nucl Med Mol Imag 2009;36:56–68
  • Hamamura MJ, Ha S, Roeck WW, et al. Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition. Phys Med Biol 2010;55:1563–75
  • Louie A. Multimodality imaging probes: design and challenges. Chem Rev 2010;110:3146–95
  • Jennings LE, Long NJ. ‘Two is better than one’—Probes for dual-modality molecular imaging. Chem Commun 2009;24:3511–24
  • Lee S, Chen X. Dual-modality probes for in vivo molecular imaging. Mol Imag 2008;8:87–100
  • Kim J, Piao Y, Hyeon T. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem Soc Rev 2009;38:372–90
  • Cheon J, Lee J-H. Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc Chem Res 2008;41:1630–40
  • Schipper ML, Cheng Z, Lee S-W, et al. microPET-based biodistribution of quantum dots in living mice. J Nucl Med 2007;48:1511–18
  • Schipper ML, Iyer G, Koh AL, et al. Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 2009;5:126–34
  • Dufort S, Sancey L, Wenk C, et al. Optical small animal imaging in the drug discovery process. Biochim Biophys Acta (BBA)-Biomemb 2010;1798:2266–73
  • Wang H, Cai W, Chen K, et al. A new PET tracer specific for vascular endothelial growth factor receptor 2. Eur J Nucl Med Mol Imag 2007;34:2001–10
  • Cai W, Chen K, Mohamedali KA, et al. PET of vascular endothelial growth factor receptor expression. J Nucl Med 2006;47:2048–56
  • Kim KJ, Li B, Winer J, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1993;362:841–4
  • Ferrara N, Hillan KJ, Novotny W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun 2005;333:328–35
  • Cai W, Chen X. Multimodality imaging of vascular endothelial growth factor and vascular endothelial growth factor receptor expression. Front Biosci 2006;12:4267–79
  • Chen K, Li Z-B, Wang H, et al. Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots. Eur J Nucl Med Mol Imag 2008;35:2235–44
  • Lee H-Y, Li Z, Chen K, et al. PET/MRI dual-modality tumor imaging using arginine–glycine–aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles. J Nucl Med 2008;49:1371–9
  • Xie J, Chen K, Huang J, et al. PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials 2010;31:3016–22
  • Bogenrieder T, Herlyn M. Axis of evil: molecular mechanisms of cancer metastasis. Oncogene 2003;22:6524–36
  • Rajendran JG, Krohn KA. Imaging hypoxia and angiogenesis in tumors. Radiol Clin N Am 2005;43:169–87
  • Krohn KA, Link JM, Mason RP. Molecular imaging of hypoxia. J Nucl Med 2008;49:129S–48S
  • Volkow ND, Fowler JS, Gatley SJ, et al. PET evaluation of the dopamine system of the human brain. J Nucl Med 1996;37:1242–56
  • Jiménez-Mancilla N, Ferro-Flores G, Santos-Cuevas C, et al. Multifunctional targeted therapy system based on (99m) Tc/(177) Lu-labeled gold nanoparticles-Tat(49-57)-Lys(3)-bombesin internalized in nuclei of prostate cancer cells. J Label Comp Radiopharm 2013;56:663–71
  • Santos-Cuevas CL, Ferro-Flores G, Rojas-Calderón EL, et al. 99mTc-N2S2-Tat (49-57)-bombesin internalized in nuclei of prostate and breast cancer cells: kinetics, dosimetry and effect on cellular proliferation. Nucl Med Commun 2011;32:303–13
  • Del Vecchio S, Zannetti A, Fonti R, et al. Nuclear imaging in cancer theranostics. Quart J Nucl Med Mol Imag 2007;51:152–63
  • Sumer B, Gao J. Theranostic nanomedicine for cancer. Nanomedicine 2008;3:137–40
  • Ting G, Chang C-H, Wang H-E. Cancer nanotargeted radiopharmaceuticals for tumor imaging and therapy. Anticancer Res 2009;29:4107–18
  • Assadi M, Afrasiabi K, Nabipour I, Seyedabadi M. Nanotechnology and nuclear medicine; Research and preclinical applications. Hell J Nucl Med 2011;14:149–59

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.