357
Views
46
CrossRef citations to date
0
Altmetric
Review Article

Tweaking dendrimers and dendritic nanoparticles for controlled nano-bio interactions: potential nanocarriers for improved cancer targeting

, &
Pages 642-650 | Received 01 Apr 2015, Accepted 13 May 2015, Published online: 09 Oct 2015

References

  • Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA: Cancer J Clin 2014;64:9–29
  • Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotech 2007;2:751–60
  • Pearson RM, Hsu H-J, Bugno J, Hong S. Understanding nano-bio interactions to improve nanocarriers for drug delivery. MRS Bull 2014;39:227–37
  • Pearson RM, Juettner V, Hong S. Biomolecular corona on nanoparticles: a survey of recent literature and its implications in targeted drug delivery. Front Chem 2014;2:108
  • Kim BYS, Rutka JT, Chan WCW. Nanomedicine. N Engl J Med 2010;363:2434–43
  • Marin E, Briceño MI, Caballero-George C. Critical evaluation of biodegradable polymers used in nanodrugs. Int J Nanomed 2013;8:3071–91
  • Liechty WB, Kryscio DR, Slaughter BV, Peppas NA. Polymers for drug delivery systems. Ann Rev Chem Biomol Eng 2010;1:149–73
  • Gref R, Minamitake Y, Peracchia M, et al. Biodegradable long-circulating polymeric nanospheres. Science 1994;263:1600–3
  • Langer R. New methods of drug delivery. Science 1990;249:1527–33
  • Langer R, Tirrell DA. Designing materials for biology and medicine. Nature 2004;428:487–92
  • Bourzac K. Nanotechnology: carrying drugs. Nature 2012;491:S58–60
  • Duncan R. Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 2006;6:688–701
  • Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov 2003;2:347–60
  • Bugno J, Hsu H-J, Hong S. Recent advances in targeted drug delivery approaches using dendritic polymers. Biomater Sci 2015. [Epub ahead of print]. doi:10.1039/C4BM00351A
  • Soleyman R, Adeli M. Impact of dendritic polymers on nanomaterials. Polym Chem 2015;6:10–24
  • Sowinska M, Urbanczyk-Lipkowska Z. Advances in the chemistry of dendrimers. New J Chem 2014;38:2168–203
  • Esfand R, Tomalia DA. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 2001;6:427–36
  • Buhleier E, Wehner W, VögtleF. “Cascade”- and “nonskid-chain-like” syntheses of molecular cavity topologies. Synthesis 1978;2:155–8
  • Tomalia DA, Baker H, Dewald J, et al. A new class of polymers: starburst-dendritic macromolecules. Polym J 1985;17:117–32
  • Hawker CJ, Frechet JMJ. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc 1990;112:7638–47
  • van Dongen MA, Desai A, Orr BG, et al. Quantitative analysis of generation and branch defects in G5 poly(amidoamine) dendrimer. Polymer 2013;54:4126–33
  • Mullen DG, Borgmeier EL, Desai AM, et al. Isolation and characterization of dendrimers with precise numbers of functional groups. ChemEur J 2010;16:10675–8
  • Mullen DG, Fang M, Desai A, et al. A quantitative assessment of nanoparticle−ligand distributions: implications for targeted drug and imaging delivery in dendrimer conjugates. ACS Nano 2010;4:657–70
  • van Dongen MA, Silpe JE, Dougherty CA, et al. Avidity mechanism of dendrimer–folic acid conjugates. Mol Pharm 2014;11:1696–706
  • Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 2014;39:268–307
  • Percec V, Cho WD, Mosier PE, et al. Structural analysis of cylindrical and spherical supramolecular dendrimers quantifies the concept of monodendron shape control by generation number. J Am Chem Soc 1998;120:11061–70
  • Maiti PK, Çaǧın T, Wang G, Goddard WA. Structure of PAMAM dendrimers:  generations 1 through 11. Macromolecules 2004;37:6236–54
  • Hawker CJ, Farrington PJ, Mackay ME, et al. Molecular ball bearings: the unusual melt viscosity behavior of dendritic macromolecules. J Am Chem Soc 1995;117:4409–10
  • Uppuluri S, Keinath SE, Tomalia DA, Dvornic PR. Rheology of dendrimers. I. Newtonian flow behavior of medium and highly concentrated solutions of polyamidoamine (PAMAM) dendrimers in ethylenediamine (EDA) solvent. Macromolecules 1998;31:4498–510
  • Kaminskas LM, McLeod VM, Porter CJH, Boyd BJ. Association of chemotherapeutic drugs with dendrimer nanocarriers: an assessment of the merits of covalent conjugation compared to noncovalent encapsulation. Mol Pharm 2012;9:355–73
  • Satsangi A, Roy SS, Satsangi RK, et al. Design of a paclitaxel prodrug conjugate for active targeting of an enzyme upregulated in breast cancer cells. Mol Pharm 2014;11:1906–18
  • Patri AK, Kukowska-Latallo JF, Baker Jr JR. Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev 2005;57:2203–14
  • Hong S, Bielinska AU, Mecke A, et al. Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjug Chem 2004;15:774–82
  • Hong S, Leroueil PR, Janus EK, et al. Interaction of polycationic polymers with supported lipid bilayers and cells:  nanoscale hole formation and enhanced membrane permeability. Bioconjug Chem 2006;17:728–34
  • Malik N, Wiwattanapatapee R, Klopsch R, et al. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J Control Release 2000;65:133–48
  • Kobayashi H, Kawamoto S, Saga T, et al. Micro-MR angiography of normal and intratumoral vessels in mice using dedicated intravascular MR contrast agents with high generation of polyamidoamine dendrimer core: reference to pharmacokinetic properties of dendrimer-based MR contrast agents. J Magn Reson Imaging 2001;14:705–13
  • Kobayashi H, Sato N, Hiraga A, et al. 3D-micro-MR angiography of mice using macromolecular MR contrast agents with polyamidoamine dendrimer core with reference to their pharmacokinetic properties. Magn Reson Med 2001;45:454–60
  • Kukowska-Latallo JF, Candido KA, Cao Z, et al. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 2005;65:5317–24
  • Wu W, Driessen W, Jiang X. Oligo(ethylene glycol)-based thermosensitive dendrimers and their tumor accumulation and penetration. J Am Chem Soc 2014;136:3145–55
  • Yang Y, Sunoqrot S, Stowell C, et al. Effect of size, surface charge, and hydrophobicity of poly(amidoamine) dendrimers on their skin penetration. Biomacromolecules 2012;13:2154–62
  • Kaminskas LM, Boyd BJ, Karellas P, et al. Impact of surface derivatization of poly-l-lysine dendrimers with anionic arylsulfonate or succinate groups on intravenous pharmacokinetics and disposition. Mol Pharm 2007;4:949–61
  • Caminade A-M, Laurent R, Delavaux-Nicot B, Majoral J-P. “Janus” dendrimers: syntheses and properties. New J Chem 2012;36:217–26
  • Wooley KL, Hawker CJ, Frechet JMJ. Polymers with controlled molecular architecture: control of surface functionality in the synthesis of dendritic hyperbranched macromolecules using the convergent approach. J Chem Soc, Perkin Trans 1 1991;(5):1059–76
  • Aoi K, Itoh K, Okada M. Divergent/convergent joint approach with a half-protected initiator core to synthesize surface-block dendrimers. Macromolecules 1997;30:8072–4
  • Imae T, Ito M, Aoi K, et al. Formation of organized adsorption layers by amphiphilic dendrimers. Colloid Surf A: Physicochem Eng Aspects 2000;175:225–34
  • Lee CC, Gillies ER, Fox ME, et al. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc Nat Acad Sci 2006;103:16649–54
  • Al-Jamal KT, Ramaswamy C, Florence AT. Supramolecular structures from dendrons and dendrimers. Adv Drug Deliv Rev 2005;57:2238–70
  • Bayele HK, Sakthivel T, O'Donell M, et al. Versatile peptide dendrimers for nucleic acid delivery. J Pharm Sci 2005;94:446–57
  • Wurm F, Frey H. Linear–dendritic block copolymers: the state of the art and exciting perspectives. Prog Polym Sci 2011;36:1–52
  • Gitsov I, Wooley KL, Fréchet JMJ. Novel polyether copolymers consisting of linear and dendritic blocks. Angew Chem Int Ed 1992;31:1200–2
  • Nguyen PM, Hammond PT. Amphiphilic linear–dendritic triblock copolymers composed of poly(amidoamine) and poly(propylene oxide) and their micellar-phase and encapsulation properties. Langmuir 2006;22:7825–32
  • Yang Y, Hua C, Dong C-M. Synthesis, self-assembly, and in vitro doxorubicin release behavior of dendron-like/linear/dendron-like poly(ε-caprolactone)-b-poly(ethylene glycol)-b-poly(ε-caprolactone) triblock copolymers. Biomacromolecules 2009;10:2310–18
  • Bae JW, Pearson RM, Patra N, et al. Dendron-mediated self-assembly of highly PEGylated block copolymers: a modular nanocarrier platform. Chem Commun 2011;47:10302–4
  • Santos JL, Herrera-Alonso M. Kinetically arrested assemblies of architecturally distinct block copolymers. Macromolecules 2014;47:137–45
  • Hsu H-J, Sen S, Pearson RM, et al. Poly(ethylene glycol) corona chain length controls end-group-dependent cell interactions of dendron micelles. Macromolecules 2014;47:6911–18
  • Yang Y, Pearson RM, Lee O, et al. Dendron-based micelles for topical delivery of endoxifen: a potential chemo-preventive medicine for breast cancer. Adv Funct Mater 2014;24:2442–9
  • Hong S, Leroueil PR, Majoros IJ, et al. The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol 2007;14:107–15
  • Myung JH, Gajjar KA, Saric J, et al. Dendrimer-mediated multivalent binding for the enhanced capture of tumor cells. Angew Chem Int Ed 2011;50:11769–72
  • Poon Z, Chen S, Engler AC, et al. Ligand-clustered “patchy” nanoparticles for modulated cellular uptake and in vivo tumor targeting. Angew Chem Int Ed 2010;49:7266–70
  • Poon Z, Lee JA, Huang S, et al. Highly stable, ligand-clustered “patchy” micelle nanocarriers for systemic tumor targeting. Nanomed Nanotechnol Biol Med 2011;7:201–9
  • Gillies ER, Jonsson TB, Fréchet JMJ. Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. J Am Chem Soc 2004;126:11936–43
  • Gillies ER, Fréchet JMJ. pH-responsive copolymer assemblies for controlled release of doxorubicin. Bioconjug Chem 2005;16:361–8
  • Harnoy AJ, Rosenbaum I, Tirosh E, et al. Enzyme-responsive amphiphilic PEG–dendron hybrids and their assembly into smart micellar nanocarriers. J Am Chem Soc 2014;136:7531–4
  • Wood KC, Little SR, Langer R, Hammond PT. A family of hierarchically self-assembling linear-dendritic hybrid polymers for highly efficient targeted gene delivery. Angew Chem Int Ed 2005;44:6704–8
  • Yang B, Sun Y-X, Yi W-J, et al. A linear-dendritic cationic vector for efficient DNA grasp and delivery. Acta Biomater 2012;8:2121–32
  • Sunoqrot S, Bae JW, Jin S-E, et al. Kinetically controlled cellular interactions of polymer−polymer and polymer−liposome nanohybrid systems. Bioconjug Chem 2011;22:466–74
  • Sunoqrot S, Bae JW, Pearson RM, et al. Temporal control over cellular targeting through hybridization of folate-targeted dendrimers and PEG–PLA nanoparticles. Biomacromolecules 2012;13:1223–30
  • Sunoqrot S, Bugno J, Lantvit D, et al. Prolonged blood circulation and enhanced tumor accumulation of folate-targeted dendrimer–polymer hybrid nanoparticles. J Control Release 2014;191:115–22
  • Sunoqrot S, Liu Y, Kim D-H, Hong S. In vitro evaluation of dendrimer–polymer hybrid nanoparticles on their controlled cellular targeting kinetics. Mol Pharm 2013;10:2157–66
  • Sun Q, Sun X, Ma X, et al. Integration of nanoassembly functions for an effective delivery cascade for cancer drugs. Adv Mater 2014;26:7615–21

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.