660
Views
61
CrossRef citations to date
0
Altmetric
Original Article

Efficient “green” encapsulation of a highly hydrophilic anticancer drug in metal–organic framework nanoparticles

, , , , , , , & show all
Pages 759-767 | Received 14 May 2015, Accepted 13 Jul 2015, Published online: 09 Oct 2015

References

  • Furman PA, Fyfe JA, St Clair MH, et al. Phosphorylation of 3′-azido-3′-deoxythymidine and selective interaction of the 5′-triphosphate with human immunodeficiency virus reverse transcriptase. Proc Natl Acad Sci USA 1986;83:8333–7
  • Balzarini J, Herdewijn P, De Clercq E. Differential patterns of intracellular metabolism of 2′,3′-Didehydro-2′,3′-dideoxythymidine and 3′-azido-2′,3′-dideoxythymidine, two potent anti-human immunodeficiency virus compounds. J Biol Chem 1989;264:6127–33
  • Kukhanova M, Krayevsky A, Prusoff W, Cheng YC. Design of anti-HIV compounds from nucleoside to nucleoside 5-triphosphate analogs: problems and perspectives. Curr Pharm Des 2000;6:585–98
  • Törnevik Y, Ullman B, Balzarini J, et al. Cytotoxicity of 3′-azido-3′-deoxythymidine correlates with 3′-azidothymidine-5′-monophosphate (AZTMP) levels, whereas antihuman immunodeficiency virus (HIV) activity correlates with 3′-azidothymidine-5′-triphosphate (AZTTP) levels in cultured CEM T-lymphoblastoid cells. Biochem Pharmacol 1995;49:829–37
  • Li X, Chan WK. Transport, metabolism and elimination mechanisms of anti-HIV agents. Adv Drug Deliv Rev 1999;39:81–103
  • Loke SL, Stein CA, Zhang XH, et al. Characterization of oligonucleotide transport into living cells. Proc Natl Acad Sci USA 1989;86:3474–8
  • Diab R, Degobert G, Hamoudeh M, et al. Nucleoside analogue delivery systems in cancer therapy. Expert Opin 2007;4:513–31
  • Caron J, Lepeltier E, Harivardhan Reddy L, et al. Squalenoyl gemcitabine monophosphate: synthesis, characterisation of nanoassemblies and biological evaluation. Eur J Org Chem 2011;14:2615–28
  • Hillaireau H, Couvreur P. Nanoencapsulation of antiviral nucleotide analogs. J Drug Deliv Sci Technol 2009;19:385–90
  • Hillaireau H, Le Doan T, Appel M, Couvreur P. Hybrid polymer nanocapsules enhance in vitro delivery of azidothymidine-triphosphate to macrophages. J Control Release 2006;116:346–52
  • Hillaireau H, Le Doan T, Besnard M, et al. Encapsulation of antiviral nucleotide analogues azidothymidine-triphosphate and cidofovir in poly(iso-butylcyanoacrylate) nanocapsules. Int J Pharm 2006;324:37–42
  • Hillaireau H, Le Doan T, Chacun H, et al. Encapsulation of mono- and oligo-nucleotides into aqueous-core nanocapsules in presence of various water-soluble polymers. Int J Pharm 2007;331:148–52
  • Kohli E, Han HY, Zeman AD, Vinogradov SV. Formulations of biodegradable nanogel carriers with 5′-triphosphates of nucleoside analogs that display a reduced cytotoxicity and enhanced drug activity. J Control Release 2007;121:19–27
  • Saiyed ZM, Gandhi NH, Nair MPN. AZT 5′-triphosphate nanoformulation suppresses human immunodeficiency virus type 1 replication in peripheral blood mononuclear cells. J Neurovirol 2009;15:343–7
  • Saiyed ZM, Gandhi NH, Nair MPN. Magnetic nanoformulation of azidothymidine 5′-triphosphate for targeted delivery across the blood–brain barrier. Int J Nanomed 2010;5:157–66
  • Vinogradov SV. Polymeric nanogel formulations of nucleoside analogs. Expert Opin Drug Deliv 2007;4:5–17
  • Vinogradov SV, Kabanov AV. Synthesis of nanogel carriers for delivery of active phosphorylated nucleoside analogues. Polymer Prepr 2004;22:296
  • Vinogradov SV, Poluektova LY, Makarov E, et al. Nano-NRTIs: efficient inhibitors of HIV type-1 in macrophages with a reduced mitochondrial toxicity. Antivir Chem Chemother 2010;21:1–14
  • Vinogradov SV, Zeman AD, Batrakova EV, Kabanov AV. Polyplex nanogel formulations for drug delivery of cytotoxic nucleoside analogs. J Control Release 2005;107:143–57
  • Horcajada P, Chalati T, Serre C, et al. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater 2010;9:172–8
  • Horcajada P, Gref R, Baati T, et al. Metal–organic frameworks in biomedicine. Chem Rev 2012;112:1232–68
  • Horcajada P, Surble S, Serre C, et al. Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chem Commun 2007;27:2820–2
  • Chalati T, Horcajada P, Couvreur P, et al. Porous metal organic framework nanoparticles to address the challenges related to busulfan encapsulation. Nanomedicine 2011;6:1683–95
  • Huxford RC, Della Rocca J, Lin W. Metal–organic frameworks as potential drug carriers. Curr Opin Chem Biol 2010;14:262–8
  • Rieter WJ, Pott KM, Taylor KML, Lin W. Nanoscale coordination polymers for platinum-based anticancer drug delivery. J Am Chem Soc 2008;130:11584–5
  • Taylor-Pashow KML, Rocca JD, Xie Z, et al. Post-synthetic modifications of iron-carboxylate nanoscale metal–organic frameworks for imaging and drug delivery. J Am Chem Soc 2009;131:14261–3
  • Della Rocca J, Liu D, Lin W. Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Acc Chem Res 2011;44:957–68
  • Baati T, Njim L, Neffati F, et al. In depth analysis of the in vivo toxicity of nanoparticles of porous iron(III) metal–organic frameworks. Chem Sci 2013;4:1597–607
  • Agostoni V, Chalati T, Horcajada P, et al. Towards an improved anti-HIV activity of NRTI via metal–organic frameworks nanoparticles. Adv Healthcare Mater 2012;2:1630–7
  • Agostoni V, Anand R, Monti S, et al. Impact of phosphorylation on the encapsulation of nucleoside analogues within porous iron(III) metal–organic framework MIL-100(Fe) nanoparticles. J Mater Chem B 2013;1:4231–42
  • Arnér ESJ, Eriksson S. Mammalian deoxyribonucleoside kinases. Pharmacol Ther 1995;67:155–86
  • Johansson M, Van Rompay AR, Degrève B, et al. Cloning and characterization of the multisubstrate deoxyribonucleoside kinase of Drosophila melanogaster. J Biol Chem 1999;274:23814–19
  • Van Rompay AR, Johansson M, Karlsson A. Substrate specificity and phosphorylation of antiviral and anticancer nucleoside analogues by human deoxyribonucleoside kinases and ribonucleoside kinases. Pharmacol Ther 2003;100:119–39
  • Bergman AM, Pinedo HM, Peters GJ. Determinants of resistance to 2′,2′-difluorodeoxycytidine (gemcitabine). Drug Resist Updat 2002;5:19–33
  • Bouffard DY, Laliberté J, Momparler RL. Kinetic studies on 2′,2′-difluorodeoxycytidine (gemcitabine) with purified human deoxycytidine kinase and cytidine deaminase. Biochem Pharmacol 1993;45:1857–61
  • Sandler AB, Nemunaitis J, Denham C, et al. Phase III trial of gemcitabine plus cisplatin versus cisplatin alone in patients with locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 2000;18:122–30
  • Burris 3rd HA, Moore MJ, Andersen J, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 1997;15:2403–13
  • Heinemann V. Role of gemcitabine in the treatment of advanced and metastatic breast cancer. Oncology 2003;64:191–206
  • Mackey JR, Yao SYM, Smith KM, et al. Gemcitabine transport in xenopus oocytes expressing recombinant plasma membrane mammalian nucleoside transporters. J Natl Cancer Inst 1999;91:1876–81
  • Zhang J, Visser F, King KM, et al. The role of nucleoside transporters in cancer chemotherapy with nucleoside drugs. Cancer Metastasis Rev 2007;26:85–110
  • Bouffard DY, Lalibert JE, Momparler RL. Kinetic studies on 2′,2′-difluorodeoxycytidine (gemcitabine) with purified human deoxycytidine kinase and cytidine deaminase. Biochem Pharmacol 1993;45:1857–61
  • Hsu C-H, Liou J-Y, Dutschman GE, Cheng Y-C. Phosphorylation of cytidine, deoxycytidine, and their analog monophosphates by human UMP/CMP kinase is differentially regulated by ATP and magnesium. Mol Pharmacol 2005;67:806–14
  • Plunkett, W, Huang P, Xu Y, et al. Gemcitabine: metabolism, mechanisms of action, and self-potentiation. Semin Oncol 1995;22:3–10
  • Baker CH, Banzon J, Bollinger JM, et al. 2′-Deoxy-2′-methylenecytidine and 2′-deoxy-2′,2′-difluorocytidine 5′-diphosphates: potent mechanism-based inhibitors of ribonucleotide reductase. J Med Chem 1991;34:1879–84
  • Storniolo AM, Allerheiligen SR, Pearce HL. Preclinical, pharmacologic, and phase I studies of gemcitabine. Semin Oncol 1997;24:S7
  • Tannock IF, Lee CM, Tunggal JK, et al. Limited penetration of anticancer drugs through tumor tissue: a potential cause of resistance of solid tumors to chemotherapy. Clin Cancer Res 2002;8: 878–84
  • Edzes HT, Peters GJ, Noordhuis P, Vermorken JB. Determination of the antimetabolite gemcitabine (2′,2′-difluoro-2′-deoxycytidine) and of 2′,2′-difluoro-2′-deoxyuridine by 19F nuclear magnetic resonance spectroscopy. Anal Biochem 1993;214:25–30
  • Risbood PA, Kane Jr CT, Hossain MT, et al. Synthesis of gemcitabine triphosphate (dFdCTP) as a tris(triethylammonium) salt. Bioorg Med Chem Lett 2008;18:2957–8
  • Burgess K, Cook D. Syntheses of nucleoside triphosphates. Chem Rev 2000;100:2047–60
  • Agostoni V, Horcajada P, Rodriguez Ruiz V, et al. “Green” fluorine-free mesoporous iron(iii) trimesate nanoparticles for drug delivery. Green Mater 2013;1:209–17
  • García Márquez A, Demessence A, Platero-Prats AE, et al. Green microwave synthesis of MIL-100 (Al, Cr, Fe) nanoparticles for thin-film elaboration. Eur J Inorg Chem 2012;2012:5165–74
  • Seo YK, Yoon JW, Lee JS, et al. Large scale fluorine-free synthesis of hierarchically porous iron(III) trimesate MIL-100(Fe) with a zeolite MTN topology. Micropor Mesopor Mater 2012;157:137–45
  • Hillaireau H, Le Doan T, Couvreur P. Polymer-based nanoparticles for the delivery of nucleoside analogues. J Nanosci Nanotechnol 2006;6:2608–17
  • Kabanov AV, Vinogradov SV. Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed 2009;48:5418–29
  • Kohli E, Han HY, Zeman AD, Vinogradov SV. Formulations of biodegradable nanogel carriers with 5′-triphosphates of nucleoside analogs that display a reduced cytotoxicity and enhanced drug activity. J Control Release 2007;121:19–27
  • Vinogradov SV. Polymeric nanogel formulations of nucleoside analogs. Expert Opin Drug Deliv 2007;4:5–17
  • Zhang Y, Kim WY, Huang L. Systemic delivery of gemcitabine triphosphate via LCP nanoparticles for NSCLC and pancreatic cancer therapy. Biomaterials 2013;34:3447–58
  • Zhang Y, Schwerbrock NMJ, Rogers AB, et al. Codelivery of VEGF siRNA and gemcitabine monophosphate in a single nanoparticle formulation for effective treatment of NSCLC. Mol Ther 2013;21:1559–69
  • Manouilidou MD, Lazarou YG, Mavridis IM, Yannakopoulou K. Staudinger ligation towards cyclodextrin dimers in aqueous/organic media. Synthesis, conformations and guest-encapsulation ability. Beilst J Org Chem 2014;10:774–83

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.