346
Views
9
CrossRef citations to date
0
Altmetric
Original Article

Lactose-modified DNA tile nanostructures as drug carriers

, &
Pages 709-719 | Received 28 Jul 2015, Accepted 16 Jan 2016, Published online: 26 Feb 2016

References

  • Niemeyer CM. Self-assembled nanostructures based on DNA: towards the development of nanobiotechnology. Curr Opin Chem Biol 2000;4:609–18.
  • (a) Rothemund PW. Folding DNA to create nanoscale shapes and patterns. Nature 2006;440:297–302; (b) Lo PK, Metera KL, Sleiman HF. Self-assembly of three-dimensional DNA nanostructures and potential biological applications. Curr Opin Chem Biol 2010;14:597–607.
  • (a) Pal S, Deng Z, Ding B, et al. DNA‐origami‐directed self‐assembly of discrete silver‐nanoparticle architectures. Angew Chem 2010;122:2760–4; (b) Ding B, Deng Z, Yan H, et al. Gold nanoparticle self-similar chain structure organized by DNA origami. J Am Chem Soc 2010;132:3248–9; (c) Kuzyk A, Laitinen KT, Törmä P. DNA origami as a nanoscale template for protein assembly. Nanotechnology 2009;20:235–305; (d) Maune HT, Han SP, Barish RD, et al. Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat Nanotechnol 2009;5:61–6.
  • Winfree E, Liu F, Wenzler LA, Seeman NC. Design and self-assembly of two-dimensional DNA crystals. Nature 1998;394:539–44.
  • La Bean TH, Yan H, Kopatsch J, et al. Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes. J Am Chem Soc 2000;122:1848–60.
  • Reif JH, La Bean TH, Sahu S, et al. Design, simulation, and experimental demonstration of self-assembled DNA nanostructures and motors. In: Unconventional programming paradigms. Berlin: Springer; 2005:173–87.
  • (a) Wu-Pong S, Weiss T, Hunt C. Calcium dependent cellular uptake of ac-mycantisenseoligo nucleotide. Cell Mol Biol (Noisy-le-Grand, France) 1994;40:843–50; (b) Wu-Pong S, Weiss TL, Hunt CA. Antisense c-myc oligodeoxyribonucleotide cellular uptake. Pharm Res 1992;9:1010–17; (c) Stein C, Tonkinson JL, Zhang LM, et al. Dynamics of the internalization of phosphodiester oligodeoxynucleotides in HL60 cells. Biochemistry 1993;32:4855–61; (d) Hanss B, Leal-Pinto E, Bruggeman LA, et al. Identification and characterization of a cell membrane nucleic acid channel. Proc Natl Acad Sci 1998;95:1921–6.
  • (a) Lochmann D, Jauk E, Zimmer A. Drug delivery of oligonucleotides by peptides. Eur J Pharm Biopharm 2004;58:237–51; (b) Juliano RL. Peptide-oligonucleotide conjugates for the delivery of antisense and siRNA. Curr Opin Mol Ther 2005;7:132–6; (c) Dass CR. Oligonucleotide delivery to tumours using macromolecular carriers. Biotechnol Appl Biochem 2004;40:113–22; (d) Templeton NS, Lasic DD. New directions in liposome gene delivery. Mol Biotechnol 1999;11:175–80.
  • Calvo MB, Figueroa A, Pulido EG, et al. Potential role of sugar transporters in cancer and their relationship with anticancer therapy. Int J Endocrinol 2010. DOI: http://dx.doi.org/10.1155/2010/205357.
  • Monsigny M, Midoux P, Mayer R, Roche AC. Glycotargeting: influence of the sugar moiety on both the uptake and the intracellular trafficking of nucleic acid carried by glycosylated polymers. Biosci Rep 1999;19:125–32.
  • (a) Wu GY, Wu CH. Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J Biol Chem 1987;262:4429–32; (b) Wu GY, Wu CH. Receptor-mediated gene delivery and expression in vivo. J Biol Chem 1988;263:14621–4; (c) Wu GY, Wu CH. Evidence for targeted gene delivery to HepG2 hepatoma cells in vitro. Biochemistry 1988;27:887–92.
  • Yan H, Park SH, Finkelstein G, et al. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 2003;301:1882–4.
  • David A. Carbohydrate‐based biomedical copolymers for targeted delivery of anticancer drugs. Israel J Chem 2010;50:204–19.
  • Kunath K, von Harpe A, Fischer D, Kissel T. Galactose-PEI–DNA complexes for targeted gene delivery: degree of substitution affects complex size and transfection efficiency. J Control Release 2003;88:159–72.
  • (a) Fajac I, Briand P, Monsigny M, et al. Sugar-mediated uptake of glycosylated polylysines and gene transfer into normal and cystic fibrosis airway epithelial cells. Hum Gene Ther 1999;10:395–406; (b) Allo JC, Midoux P, Merten M, et al. Efficient gene transfer into human normal and cystic fibrosis tracheal gland serous cells with synthetic vectors. Am J Respir Cell Mol Biol 2000;22:166–75.
  • (a) Hasegawa T, Fujisawa T, Numata M, et al. Schizophyllans carry in goligosaccharide appendages as potential candidates for cell-targeted antisense carrier. Org Biomol Chem 2004;2:3091–8; (b) Hasegawa T, Umeda M, Matsumoto T, et al. Lactose-appended schizophyllan is a potential candidate as a hepatocyte-targeted antisense carrier. Chem Commun 2004;382–3.
  • Sizovs A, Mc Lendon PM, Srinivasachari S, Reineke TM. Carbohydrate polymers for nonviral nucleic acid delivery. In: Nucleic acid transfection. Berlin, Heidelberg: Springer; 2010:131–90.
  • (a) Matsuura K, Akasaka T, Hibino M, et al. Facile synthesis of stable and lectin-recognizable DNA-carbohydrate conjugates via diazo coupling. Bioconjug Chem 2000;11:202–11; (b) Adinolfi M, Barone G, Napoli LD, et al. Solid phase glycosidation of oligonucleotides. Tetrahedron Lett 1999;40:2607–10; (c) Forget D, Renaudet O, Defrancq E, Dumy P. Efficient preparation of carbohydrate–oligonucleotide conjugates (COCs) using oxime bond formation. Tetrahedron Lett 2001;42:7829–32.
  • Sando S, Matsui K, Niinomi Y, et al. Facile preparation of DNA-tagged carbohydrates. Bioorg Med Chem Lett Chem 2003;13:2633–6.
  • Weiss RB. The anthracyclines: will we ever find a better doxorubicin? Semin Oncol 1992;670–86.
  • (a) Minotti G, Menna P, Salvatorelli E, et al. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 2004;56:185–229; (b) Biganzoli L, Minisini A, Aapro MD, Leo A. Chemotherapy for metastatic breast cancer. Curr Opin Obstet Gynecol 2004;16:37–41; (c) Suzuki F, Hashimoto K, Kikuchi H, et al. Induction of tumor-specific cytotoxicity and apoptosis by doxorubicin. Anticancer Res 2005;25:887–93.
  • Shen Z, Li Y, Kohama K, et al. Improved drug targeting of cancer cells by utilizing actively targetable folic acid-conjugated albumin nanospheres. Pharmacol Res 2011;63:51–8.
  • Bagheri S, Hassani S, Mahdizadeh S. Theoretical study on physicochemical and geometrical properties of DOX-GA3 and DOX-mGA3. J Chem Pharm Res 2011;3:524–7.
  • Chang M, Yang CS, Huang DM. Aptamer-conjugated DNA icosahedral nanoparticles as a carrier of doxorubicin for cancer therapy. ACS Nano 2011;5:6156–63.
  • Jiang Q, Song C, Nangreave J, et al. DNA origami as a carrier for circumvention of drug resistance. J Am Chem Soc 2012;134:13396–403.
  • Zhao YX, Shaw A, Zeng X, et al. DNA origami delivery system for cancer therapy with tunable release properties. ACS Nano 2012;6:8684–91.
  • (a) Hajian R, Shams N, Mohagheghian M. Study on the interaction between doxorubicin and deoxyribonucleic acid with the use of methylene blue as a probe. J Braz Chem Soc 2009;20:1399–1405; (b) Zeman SM, Phillips DR, Crothers DM. Characterization of covalent adriamycin–DNA adducts. Proc Natl Acad Sci 1998;95:11561–5.
  • Kelley SO, Barton JK, Jackson NM, Hill MG. Electrochemistry of methylene blue bound to a DNA-modified electrode. Bioconjug Chem 1997;8:31–7.
  • Momparler RL, Karon M, Siegel SE, Avila F. Effect of adriamycin on DNA, RNA, and protein synthesis in cell-free systems and intact cells. Cancer Res 1976;36:2891–5.
  • Maruyama A, Watanabe H, Ferdous A, et al. Characterization of interpolyelectrolyte complexes between double-stranded DNA and polylysine comb-type copolymers having hydrophilic side chains. Bioconjug Chem 1998;9:292–9.
  • Wang LH, Rothberg KG, Anderson R. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J Cell Biol 1993;123:1107–17.
  • Parton RG, Joggerst B, Simons K. Regulated internalization of caveolae. J Cell Biol 1994;127:1199–215.
  • Jung C, Rampal A, Cytochalasin B. Binding sites and glucose transport carrier in human erythrocyte ghosts. J Biol Chem 1977;252:5456–63.
  • Peterson JR, Mitchison TJ. Small molecules, big impact: a history of chemical inhibitors and the cytoskeleton. Chem Biol 2002;9:1275–85.
  • Saraste J, Palade GE, Farquhar MG. Temperature-sensitive steps in the transport of secretory proteins through the Golgi complex in exocrine pancreatic cells. Proc Natl Acad Sci 1986;83:6425–9.
  • Yang H, Lou C, Xu M, et al. Investigation of folate-conjugated fluorescent silica nanoparticles for targeting delivery to folate receptor-positive tumors and their internalization mechanism. Int J Nanomed 2011;6:2023–2032.
  • Giljohann DA, Seferos DS, Patel PC, et al. Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles. Nano Lett 2007;7:3818–21.
  • Klink D, Yu QC, Glick MC, Scanlin T. Lactosylated poly-l-lysine targets a potential lactose receptor in cystic fibrosis and non-cystic fibrosis airway epithelial cells. Mol Ther: J Am Soc Gene Ther 2003;7:73–80.
  • (a) Moros M, Hernáez B, Garet E, et al. Monosaccharides versus PEG-functionalized NPs: influence in the cellular uptake. ACS Nano 2012;6:1565–77; (b) Marradi M, Martín-Lomas M, Penades S. Glyconanoparticles: polyvalent tools to study carbohydrate-based interactions. Adv Carbohydr Chem Biochem 2010;64:211–90; (c) Kikkeri R, Lepenies B, Adibekian A, et al. In vitro imaging and in vivo liver targeting with carbohydrate capped quantum dots. J Am Chem Soc 2009;131:2110–12; (d) Kennedy DC, Grünstein D, Lai CH, Seeberger PH. Glycosylated nanoscale surfaces: preparation and applications in medicine and molecular biology. Chem-A Eur J 2013;19:3794–800.
  • Sur I, Cam D, Kahraman M, et al. Interaction of multi-functional silver nanoparticles with living cells. Nanotechnology 2010;21:175104.
  • Benito‐Alifonso D, Tremel S, Hou B, et al. Lactose as a “Trojan Horse” for quantum dot cell transport. Angew Chem 2014;126:829–33.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.