382
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Cyclic RGD peptides target human trabecular meshwork cells while ameliorating connective tissue growth factor-induced fibrosis

, , , &
Pages 952-959 | Received 05 Dec 2015, Accepted 06 Mar 2016, Published online: 27 Mar 2016

References

  • Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006;90:262–7.
  • Braunger BM, Fuchshofer R, Tamm ER. The aqueous humor outflow pathways in glaucoma: a unifying concept of disease mechanisms and causative treatment. Eur J Pharm Biopharm 2015;95:173–81.
  • Inatani M, Tanihara H, Katsuta H, et al. Transforming growth factor-beta 2 levels in aqueous humor of glaucomatous eyes. Graefes Arch Clin Exp Ophthalmol 2001;239:109–13.
  • Ochiai Y, Ochiai H. Higher concentration of transforming growth factor-beta in aqueous humor of glaucomatous eyes and diabetic eyes. Jpn J Ophthalmol 2002;46:249–53.
  • Picht G, Welge-Luessen U, Grehn F, Lütjen-Drecoll E. Transforming growth factor beta 2 levels in the aqueous humor in different types of glaucoma and the relation to filtering bleb development. Graefes Arch Clin Exp Ophthalmol 2001;239:199–207.
  • Tripathi RC, Li J, Chan WA, Tripathi BJ. Aqueous humor in glaucomatous eyes contains an increased level of TGF-β2. Exp Eye Res 1994;59:723–8.
  • Junglas B, Yu Alice HL, et al. Connective tissue growth factor induces extracellular matrix deposition in human trabecular meshwork cells. Exp Eye Res 2009;88:1065–75.
  • Ihn H. The role of TGF-beta signaling in the pathogenesis of fibrosis in scleroderma. Arch Immunol Ther Exp (Warsz) 2002;50:325–31.
  • Phanish MK, Winn SK, Dockrell MEC. Connective tissue growth factor-(CTGF, CCN2) – a marker, mediator and therapeutic target for renal fibrosis. Nephron Exp Nephrol 2010;114:e83–92.
  • Tomarev SI, Wistow G, Raymond V, et al. Gene expression profile of the human trabecular meshwork: NEIBank sequence tag analysis. Invest Ophthalmol Vis Sci 2003;44:2588–96.
  • Overby DR, Zhou EH, Vargas-Pinto R, et al. Altered mechanobiology of Schlemm's canal endothelial cells in glaucoma. Proc Natl Acad Sci USA 2014;111:13876–81.
  • Cheng JW, Cheng SW, Gao LD, et al. Intraocular pressure-lowering effects of commonly used fixed-combination drugs with timolol: a systematic review and meta-analysis. PLoS One 2012;7:e45079.
  • van der Valk R, Webers CAB, Schouten JSAG, et al. Intraocular pressure-lowering effects of all commonly used glaucoma drugs: a meta-analysis of randomized clinical trials. Ophthalmology 2005;112:1177–85.
  • Kholdebarin R, Campbell RJ, Jin YP, Buys YM. Multicenter study of compliance and drop administration in glaucoma. Can J Ophthalmol 2008;43:454–61.
  • Borrás T. Advances in glaucoma treatment and management: gene therapy. Invest Ophthalmol Vis Sci 2012;53:2506–10.
  • Al-Saikhan FI. The gene therapy revolution in ophthalmology. Saudi J Ophthalmol 2013;27:107–11.
  • Rasmussen CA, Kaufman PL. Exciting directions in glaucoma. Can J Ophthalmol 2014;49:534–43.
  • Pita-Thomas DW, Goldberg JL. Nanotechnology and glaucoma: little particles for a big disease. Curr Opin Ophthalmol 2013;24:130–5.
  • Wang T, Upponi JR, Torchilin VP. Design of multifunctional non-viral gene vectors to overcome physiological barriers: dilemmas and strategies. Int J Pharm 2012;427:3–20.
  • Park J, Singha K, Son S, et al. A review of RGD-functionalized nonviral gene delivery vectors for cancer therapy. Cancer Gene Ther 2012;19:741–8.
  • Gagen D, Filla MS, Clark R, et al. Activated αvβ3 integrin regulates αvβ5 integrin-mediated phagocytosis in trabecular meshwork cells. Invest Ophthalmol Vis Sci 2013;54:5000–11.
  • Overby D, Gong H, Qiu G, et al. The mechanism of increasing outflow facility during washout in the bovine eye. Invest Ophthalmol Vis Sci 2002;43:3455–64.
  • Bahler CK, Hann CR, Fautsch MP, Johnson DH. Pharmacologic disruption of Schlemm's canal cells and outflow facility in anterior segments of human eyes. Invest Ophthalmol Vis Sci 2004;45:2246–54.
  • Telci D, Wang Z, Li X, et al. Fibronectin-tissue transglutaminase matrix rescues RGD-impaired cell adhesion through syndecan-4 and beta1 integrin co-signaling. J Biol Chem 2008;283:20937–47.
  • Pollinger K, Hennig R, Breunig M, et al. Kidney podocytes as specific targets for cyclo(RGDfC)-modified nanoparticles. Small 2012;8:3368–75.
  • Mas-Moruno C, Rechenmacher F, Kessler H. Cilengitide: the first anti-angiogenic small molecule drug candidate design, synthesis and clinical evaluation. Anticancer Agents Med Chem 2010;10:753–68.
  • Fuchshofer R, Yu Alice HL, et al. Bone morphogenetic protein-7 is an antagonist of transforming growth factor-beta2 in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 2007;48:715–26.
  • Pang IH, Shade DL, Clark AF, et al. Preliminary characterization of a transformed cell strain derived from human trabecular meshwork. Curr Eye Res 1994;13:51–63.
  • Tamm ER, Russell P, Johnson DH, Piatigorsky J. Human and monkey trabecular meshwork accumulate alpha B-crystallin in response to heat shock and oxidative stress. Invest Ophthalmol Vis Sci 1996;37:2402–13.
  • Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987;162:156–9.
  • Hennig R, Pollinger K, Tessmar J, Goepferich A. Multivalent targeting of AT1 receptors with angiotensin II-functionalized nanoparticles. J Drug Target 2015;23:681–9.
  • Zhang X, Xiong Z, Wu Y, et al. Quantitative PET imaging of tumor integrin alphavbeta3 expression with 18F-FRGD2. J Nucl Med 2006;47:113–21.
  • Hong G, Tabakman SM, Welsher K, et al. Near-infrared-fluorescence-enhanced molecular imaging of live cells on gold substrates. Angew Chem Int Ed Engl 2011;50:4644–8.
  • Cho EC, Zhang Y, Cai X, et al. Quantitative analysis of the fate of gold nanocages in vitro and in vivo after uptake by U87-MG tumor cells. Angew Chem 2013;125:1190–3.
  • Pollinger K, Hennig R, Ohlmann A, et al. Ligand-functionalized nanoparticles target endothelial cells in retinal capillaries after systemic application. Proc Natl Acad Sci USA 2013;110:6115–20.
  • Wang AG, Yen MY, Hsu WM, Fann MJ. Induction of vitronectin and integrin alphav in the retina after optic nerve injury. Mol Vis 2006;12:76–84.
  • Pearce JW, Janardhan KS, Caldwell S, Singh B. Angiostatin and integrin alphavbeta3 in the feline, bovine, canine, equine, porcine and murine retina and cornea. Vet Ophthalmol 2007;10:313–9.
  • Finnemann SC, Bonilha VL, Marmorstein AD, Rodriguez-Boulan E. Phagocytosis of rod outer segments by retinal pigment epithelial cells requires alpha(v)beta5 integrin for binding but not for internalization. Proc Natl Acad Sci USA 1997;94:12932–7.
  • Mintzer MA, Simanek EE. Nonviral vectors for gene delivery. Chem Rev 2009;109:259–302.
  • Yin H, Kanasty RL, Eltoukhy AA, et al. Non-viral vectors for gene-based therapy. Nat Rev Genet 2014;15:541–55.
  • Dinçer S, Türk M, Pişkin E. Intelligent polymers as nonviral vectors. Gene Ther 2005;12:S139–45.
  • Hunter AC. Molecular hurdles in polyfectin design and mechanistic background to polycation induced cytotoxicity. Adv Drug Deliv Rev 2006;58:1523–31.
  • Sakai H, Park BC, Shen X, et al. Transduction of TAT fusion proteins into the human and bovine trabecular meshwork. Invest Ophthalmol Vis Sci 2006;47:4427–34.
  • Suk JS, Suh J, Choy K, et al. Gene delivery to differentiated neurotypic cells with RGD and HIV Tat peptide functionalized polymeric nanoparticles. Biomaterials 2006;27:5143–50.
  • Subrizi A, Tuominen E, Bunker A, et al. Tat(48–60) peptide amino acid sequence is not unique in its cell penetrating properties and cell-surface glycosaminoglycans inhibit its cellular uptake. J Control Release 2012;158:277–85.
  • Ueyama K, Mori K, Shoji T, et al. Ocular localization and transduction by adenoviral vectors are serotype-dependent and can be modified by inclusion of RGD fiber modifications. PLoS One 2014;9:e108071.
  • Buie LK, Rasmussen CA, Porterfield EC, et al. Self-complementary AAV virus (scAAV) safe and long-term gene transfer in the trabecular meshwork of living rats and monkeys. Invest Ophthalmol Vis Sci 2010;51:236–48.
  • Chen PS, Wang MY, Wu SN, et al. CTGF enhances the motility of breast cancer cells via an integrin-alphavbeta3-ERK1/2-dependent S100A4-upregulated pathway. J Cell Sci 2007;120:2053–65.
  • Liu SC, Hsu CJ, Chen HT, et al. CTGF increases IL-6 expression in human synovial fibroblasts through integrin-dependent signaling pathway. PLoS One 2012;7:e51097.
  • Junglas B, Kuespert S, Seleem AA, et al. Connective tissue growth factor causes glaucoma by modifying the actin cytoskeleton of the trabecular meshwork. Am J Pathol 2012;180:2386–403.
  • Wallace DM, Clark AF, Lipson KE, et al. Anti-connective tissue growth factor antibody treatment reduces extracellular matrix production in trabecular meshwork and lamina cribrosa cells. Invest Ophthalmol Vis Sci 2013;54:7836–48.
  • Pattabiraman PP, Rao PV. Mechanistic basis of Rho GTPase-induced extracellular matrix synthesis in trabecular meshwork cells. Am J Physiol Cell Physiol 2010;298:C749–63.
  • Tan TW, Lai CH, Huang CY, et al. CTGF enhances migration and MMP-13 up-regulation via alphavbeta3 integrin, FAK, ERK, and NF-kappaB-dependent pathway in human chondrosarcoma cells. J Cell Biochem 2009;107:345–56.
  • Luo L, Zhang X, Hirano Y, et al. Targeted intraceptor nanoparticle therapy reduces angiogenesis and fibrosis in primate and murine macular degeneration. ACS Nano 2013;7:3264–75.
  • Kotoh K, Nakamuta M, Kohjima M, et al. Arg-Gly-Asp (RGD) peptide ameliorates carbon tetrachloride-induced liver fibrosis via inhibition of collagen production and acceleration of collagenase activity. Int J Mol Med 2004;14:1049–53.
  • Wang LS, Chen YW, Li DG, Lu HM. Arg-gly-asp-mannose-6-phosphate inhibits activation and proliferation of hepatic stellate cells in vitro. World J Gastroenterol 2006;12:1303–7.
  • Legler DF, Wiedle G, Ross FP, Imhof BA. Superactivation of integrin alphavbeta3 by low antagonist concentrations. J Cell Sci 2001;114:1545–53.
  • Perbal B. CCN proteins: multifunctional signalling regulators. Lancet 2004;363:62–4.
  • Hendesi H, Barbe MF, Safadi FF, et al. Integrin mediated adhesion of osteoblasts to connective tissue growth factor (CTGF/CCN2) induces cytoskeleton reorganization and cell differentiation. PLoS One 2015;10:e0115325.
  • Brigstock D. The CCN family: a new stimulus package. J Endocrinol 2003;178:169–75.
  • Lau LF, Lam SC. The CCN family of angiogenic regulators: the integrin connection. Exp Cell Res 1999;248:44–57.
  • Arnott JA, Lambi AG, Mundy C, et al. The role of connective tissue growth factor (CTGF/CCN2) in skeletogenesis. Crit Rev Eukaryot Gene Expr 2011;21:43–69.
  • Gao R, Brigstock DR. Connective tissue growth factor (CCN2) induces adhesion of rat activated hepatic stellate cells by binding of its C-terminal domain to integrin alpha(v)beta(3) and heparan sulfate proteoglycan. J Biol Chem 2004;279:8848–55.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.