805
Views
25
CrossRef citations to date
0
Altmetric
Review Articles

Advances in RNAi therapeutic delivery to leukocytes using lipid nanoparticles

, &
Pages 780-786 | Received 11 Feb 2016, Accepted 27 Mar 2016, Published online: 04 May 2016

References

  • Jain NK , Mishra V , Mehra NK. Targeted drug delivery to macrophages. Expert Opin Drug Deliv 2013;10:353–67.
  • Chow A , Brown BD , Merad M. Studying the mononuclear phagocyte system in the molecular age. Nat Rev Immunol 2011;11:788–98.
  • Murray PJ , Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 2011;11:723–37.
  • Shi C , Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol 2011;11:762–74
  • Kelly C , Jefferies C , Cryan SA. Targeted liposomal drug delivery to monocytes and macrophages. J Drug Deliv 2011;2011:727241.
  • Bloy N , Pol J , Aranda F , et al . Trial watch: dendritic cell-based anticancer therapy. Oncoimmunology 2014;3:e963424.
  • Amoozgar Z , Goldberg MS. Targeting myeloid cells using nanoparticles to improve cancer immunotherapy . Adv Drug Deliv Rev 2015;91:38–51.
  • Palucka K , Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer 2012;12:265–77.
  • Joaõ Conde CEA. Furong Tian and Natalie Artzi. RNAi nanomaterials targeting immune cells as an anti-tumor therapy: the missing link in cancer treatment? Mater Today 2015;19:29–43.
  • Peer D. A daunting task: manipulating leukocyte function with RNAi. Immunol Rev 2013;253:185–97.
  • Lee L , Gupta M , Sahasranaman S. Immune checkpoint inhibitors: an introduction to the next-generation cancer immunotherapy. J Clin Pharmacol 2016;56:157–69.
  • Behlke MA. Progress towards in vivo use of siRNAs . Mol Ther 2006;13:644–70.
  • Daka A , Peer D. RNAi-based nanomedicines for targeted personalized therapy. Adv Drug Deliv Rev 2012;64:1508–21.
  • Elbashir SM , Harborth J , Lendeckel W , et al . Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411:494–8.
  • Shi Y. Mammalian RNAi for the masses . Trends Genet 2003;19:9–12.
  • Peer D. Harnessing RNAi nanomedicine for precision therapy. Mol Cell Ther 2014;2:5.
  • Peer D. Induction of therapeutic gene silencing in leukocyte-implicated diseases by targeted and stabilized nanoparticles: a mini-review. J Control Release 2010;148:63–8.
  • Ramishetti S , Kedmi R , Goldsmith M , et al . Systemic gene silencing in primary T lymphocytes using targeted lipid nanoparticles. ACS Nano 2015;9:6706–16.
  • Zhou J , Neff CP , Liu X , et al . Systemic administration of combinatorial dsiRNAs via nanoparticles efficiently suppresses HIV-1 infection in humanized mice. Mol Ther 2011;19:2228–38.
  • Peer D , Zhu P , Carman CV , et al . Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc Natl Acad Sci Unit States Am 2007;104:4095–100.
  • Zhou J , Li H , Li S , et al . Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy . Mol Ther 2008;16:1481–9.
  • Wheeler LA , Trifonova R , Vrbanac V , et al . Inhibition of HIV transmission in human cervicovaginal explants and humanized mice using CD4 aptamer-siRNA chimeras. J Clin Investig 2011;121:2401–12.
  • Song E , Zhu P , Lee SK , et al . Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 2005;23:709–17.
  • Kumar P , Ban HS , Kim SS , et al . T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 2008;134:577–86.
  • Weinstein S , Toker IA , Emmanuel R , et al . Harnessing RNAi-based nanomedicines for therapeutic gene silencing in B-cell malignancies. Proc Natl Acad Sci Unit States Am 2016;113:E16–22.
  • Peer D , Park EJ , Morishita Y , et al . Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 2008;319:627–30.
  • Kanasty R , Dorkin JR , Vegas A , Anderson D. Delivery materials for siRNA therapeutics. Nat Mater 2013;12:967–77.
  • Peer D , Lieberman J. Special delivery: targeted therapy with small RNAs. Gene Ther 2011;18:1127–33.
  • Landesman-Milo D , Peer D. Toxicity profiling of several common RNAi-based nanomedicines: a comparative study. Drug Deliv Trans Res 2014;4:96–103.
  • Robbins M , Judge A , Ambegia E , et al . Misinterpreting the therapeutic effects of small interfering RNA caused by immune stimulation. Hum Gene Ther 2008;19:991–9.
  • Behlke MA. Chemical modification of siRNAs for in vivo use. Oligonucleotides 2008;18:305–19.
  • Kedmi R , Ben-Arie N , Peer D. The systemic toxicity of positively charged lipid nanoparticles and the role of toll-like receptor 4 in immune activation. Biomaterials 2010;31:6867–75.
  • Goldsmith M , Mizrahy S , Peer D. Grand challenges in modulating the immune response with RNAi nanomedicines. Nanomedicine (Lond) 2011;6:1771–85.
  • Weinstein S , Emmanuel R , Jacobi AM , et al . RNA inhibition highlights cyclin D1 as a potential therapeutic target for mantle cell lymphoma. PloS One 2012;7:e43343.
  • Freeley M , Long A. The two hit hypothesis: an improved method for siRNA-mediated gene silencing in stimulated primary human T cells. J Immunol Meth 2013;396:116–27.
  • Freeley M , Long A. Advances in siRNA delivery to T-cells: potential clinical applications for inflammatory disease, cancer and infection . Biochem J 2013;455:133–47.
  • Herrmann A , Priceman SJ , Swiderski P , et al . CTLA4 aptamer delivers STAT3 siRNA to tumor-associated and malignant T cells. J Clin Investig 2014;124:2977–87.
  • Wheeler LA , Vrbanac V , Trifonova R , et al . Durable knockdown and protection from HIV transmission in humanized mice treated with gel-formulated CD4 aptamer-siRNA chimeras. Mol Ther 2013;21:1378–89.
  • Jayaraman M , Ansell SM , Mui BL , et al . Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew Chem Int Ed Engl 2012;51:8529–33.
  • Semple SC , Akinc A , Chen J , et al . Rational design of cationic lipids for siRNA delivery. Nat Biotechnol 2010;28:172–6.
  • Novobrantseva TI , Borodovsky A , Wong J , et al . Systemic RNAi-mediated gene silencing in nonhuman primate and rodent myeloid cells. Mol Ther Nucleic Acids 2012;1:e4.
  • Heyes J , Palmer L , Bremner K , MacLachlan I. Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J Control Release 2005;107:276–87.
  • Zuhorn IS , Bakowsky U , Polushkin E , et al . Nonbilayer phase of lipoplex-membrane mixture determines endosomal escape of genetic cargo and transfection efficiency. Mol Ther 2005;11:801–10.
  • Hafez IM , Maurer N , Cullis PR. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther 2001;8:1188–96.
  • Zhang J , Fan H , Levorse DA , Crocker LS. Ionization behavior of amino lipids for siRNA delivery: determination of ionization constants, SAR, and the impact of lipid pKa on cationic lipid-biomembrane interactions. Langmuir 2011;27:1907–14.
  • Ramishetti S , Huang L. Intelligent design of multifunctional lipid-coated nanoparticle platforms for cancer therapy. Ther Deliv 2012;3:1429–45.
  • Petros RA , DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 2010;9:615–27.
  • Vaishnaw AK , Gollob J , Gamba-Vitalo C , et al . A status report on RNAi therapeutics. Silence 2010;1:14.
  • Yona S , Jung S. Monocytes: subsets, origins, fates and functions . Curr Opin Hematol 2010;17:53–9.
  • Basha G , Novobrantseva TI , Rosin N , et al . Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells. Mol Ther 2011;19:2186–200.
  • Foged C , Brodin B , Frokjaer S , Sundblad A. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharmaceut 2005;298:315–22.
  • Love KT , Mahon KP , Levins CG , et al . Lipid-like materials for low-dose, in vivo gene silencing. Proc Natl Acad Sci Unit States Am 2010;107:1864–9.
  • Leuschner F , Dutta P , Gorbatov R , et al . Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol 2011;29:1005–10.
  • Benson DM, Jr , Bakan CE , Mishra A , et al . The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood 2010;116:2286–94.
  • Iwai Y , Terawaki S , Ikegawa M , et al . PD-1 inhibits antiviral immunity at the effector phase in the liver. J Exp Med 2003;198:39–50.
  • Dolina JS , Sung SS , Novobrantseva TI , et al . Lipidoid nanoparticles containing PD-L1 siRNA delivered in vivo enter Kupffer cells and enhance NK and CD8(+) T cell-mediated hepatic antiviral immunity. Mol Ther Nucleic Acids 2013;2:e72.
  • Avogadri F , Wolchok JD. Selecting antigens for cancer vaccines. Nat Biotechnol 2012;30:328–9.
  • Hobo W , Novobrantseva TI , Fredrix H , et al . Improving dendritic cell vaccine immunogenicity by silencing PD-1 ligands using siRNA-lipid nanoparticles combined with antigen mRNA electroporation. Cancer Immunol Immunother 2013;62:285–97.
  • Srinivas R , Garu A , Moku G , et al . A long-lasting dendritic cell DNA vaccination system using lysinylated amphiphiles with mannose-mimicking head-groups. Biomaterials 2012;33:6220–9.
  • Katakowski JA , Mukherjee G , Wilner SE , et al . Delivery of siRNAs to dendritic cells using DEC205-targeted lipid nanoparticles to inhibit immune responses. Mol Ther 2016;24:146–55.
  • Sharma P , Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 2015;161:205–14.
  • Srinivasan C , Peer D , Shimaoka M. Integrin-targeted stabilized nanoparticles for an efficient delivery of siRNAs in vitro and in vivo. Methods Mol Biol 2012;820:105–16.
  • Kim SS , Peer D , Kumar P , et al . RNAi-mediated CCR5 silencing by LFA-1-targeted nanoparticles prevents HIV infection in BLT mice . Mol Ther 2010;18:370–6.
  • He W , Bennett MJ , Luistro L , et al . Discovery of siRNA lipid nanoparticles to transfect suspension leukemia cells and provide in vivo delivery capability. Mol Ther 2014;22:359–70.
  • Belliveau NM , Huft J , Lin PJ , et al . Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol Ther Nucleic Acids 2012;1:e37.
  • Zhigaltsev IV , Belliveau N , Hafez I , et al . Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Langmuir 2012;28:3633–40.
  • Leung AK , Hafez IM , Baoukina S , et al . Lipid nanoparticles containing siRNA synthesized by microfluidic mixing exhibit an electron-dense nanostructured core. J Phys Chem C Nanomater Interfaces 2012;116:18440–50.
  • Leung AK , Tam YY , Chen S , et al . Microfluidic mixing: a general method for encapsulating macromolecules in lipid nanoparticle systems. J Phys Chem B 2015;119:8698–706.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.