Publication Cover
Endothelium
Journal of Endothelial Cell Research
Volume 7, 2000 - Issue 4
25
Views
46
CrossRef citations to date
0
Altmetric
Original Article

Comparison of Glycyrrhetinic Acid Isoforms and Carbenoxolone as Inhibitors of EDHF-Type Relaxations Mediated via Gap Junctions

, , &
Pages 265-278 | Received 12 Oct 1999, Published online: 13 Jul 2009

References

  • Amer M. S., McKinney G. R., Akcasu A. Effect of glycyrrhetinic acid on the cyclic nucleotide system of the rat stomach. Biochemical Pharmacology 1974; 23: 3085–3092
  • Campbell W. B., Gebremedhin D., Pratt P. F., Harder D. R. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circulation Research 1996; 78: 415–423
  • Carter T. D., Chen X. Y., Carlile G., Kalapothakis E., Ogden D., Evans W. H. Porcine aortic endothelial gap junctions: identification and permeation by caged InsP3. Journal of Cell Science 1996; 109: 1765–1773
  • Chaytor A. T., Evans W. H., Griffith T. M. Peptides homologous to extracellular loop motifs of connexin 43 abolish rhythmic contractile activity in rabbit arteries. Journal of Physiology 1997; 503: 99–110
  • Chaytor A. T., Evans W. H., Griffith T. M. Central role of heterocellular gap junctional communication in endothelium-dependent relaxations of rabbit arteries. Journal of Physiology 1998; 508: 561–573
  • Chaytor A. T., Martin P. E.M., Evans W. H., Randall M. D., Griffith T. M. The endothelial component of cannabinoid-induced relaxation in rabbit mesenteric artery depends on gap junctional communication. Journal of Physiology 1999; 520: 539–550
  • Davidson J. S., Baumgarten I. M. Glycyrrhetinic acid derivatives: a novel class of inhibitors of gap-junctional intercellular communication. Structure-activity relationships. Journal of Pharmacology and Experimental Therapeutics 1988; 246: 1104–1107
  • Davidson J. S., Baumgarten I. M., Harley E. H. Reversible inhibition of intercellular junctional communication by glycyrrhetinic acid. Biochemical anil Biophysical Research Communications 1986; 134: 29–36
  • Dembinska-Kiec A., Pallapies D., Simmet T., Peskar B. M., Peskar B. A. Effect of carbenoxolone on the biological activity of nitric oxide: relation to gastroprotection. British Journal of Pharmacology 1991; 104: 811–816
  • Dora K. A., Martin P. E.M., Chaytor A. T., Evans W. H., Garland C. J., Griffith T. M. Role of heterocellular gap junctional communication in endothelium-dependent smooth muscle hyperpolarization: inhibition by a connexin-mimetic peptide. Biochemical and Biophysical Research Communications 1999; 254: 27–31
  • Edwards G., Dora K. A., Gardener M. J., Garland C. J., Weston A H. K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature 1998; 396: 269–271
  • Elfgang C., Eckert R., Lichtenberg-Frate H., Butterweck A., Traub O., Klein R. A., Hulser D. F., Willecke K. Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. Journal of Cell Biology 1995; 129: 805–817
  • Fisslthaler B., Popp R., Kiss L., Potente M., Harder D. R., Fleming I., Busse R. Cytochrome P450 2C is an EDHF synthase in coronary arteries. Nature 1999; 401: 493–497
  • Garland C. J., Plane F., Kemp B. K., Cocks T. M. Endothelium-dependent hyperpolarization: a role in the control of vascular tone. Trends in Pharmacological Science 1995; 16: 23–30
  • George C. H., Martin P. E.M., Evans W. H. Rapid determination of gap junction formation using HeLa cells microinjected with cDNAs encoding wild-type and chimeric connexins. Biochemical and Biophysical Research Communications 1998; 247: 785–789
  • Griffith T. M., Taylor H. J. Cyclic AMP mediates EDHF-type relaxations of rabbit jugular vein. Biochemical and Biophysical Research Communications 1999; 263: 52–57
  • Gryglewski R. J., Palmer R. M., Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 1986; 320: 454–456
  • Goldberg G. S., Moreno A. P., Bechberger J. F., Hearn S. S., Shivers R. R., Macphee D. J., Zhang Y. C., Naus C C. Evidence that disruption of connexon particle arrangements in gap junction plaques is associated with inhibition of gap junctional communication by a glycyrrhetinic acid derivative. Experimental Cell Research 1996; 222: 48–53
  • Goldberg G. S., Bechberger J. F., Naus C C. A pre-loading method of evaluating gap junctional communication by fluorescent dye transfer. Biotechniques 1995; 3: 490–7
  • Guan X., Wilson S., Schlender K. K., Ruch R. J. Gap junction disassembly and connexin 43 dephosphorylation induced by 18 beta-glycyrrhetinic acid. Molecular Careinogenesis 1996; 16: 157–164
  • Guo Y., Martinez-Williams C., Gilbert K. A., Rannels D. E. Inhibition of gap junction communication in alveolar epithelial cells by 18α-glycyrrhetinic acid. American Journal of Physiology 1999; 276: L1018–L1026
  • Hall E. D., McCall J. M., Chase R. L., Yonkers P. A., Braughler J. M. A nonglucocorticoid steroid analog of methyl-prednisolone duplicates its high-dose pharmacology in models of central nervous system trauma and neuronal membrane damage. Journal of Pharmacology and Experimental Therapeutics 1987; 242: 137–142
  • He D. S., Jiang J. X., Taffet S. M., Burt J. M. Formation of heteromeric gap junction channels by connexins 40 and 43 in vascular smooth muscle cells. Proceedings of the National Academy of Sciences of the USA 1999; 96: 6495–6500
  • Hutcheson I. R., Chaytor A. T., Evans W. H., Griffith T. M. Nitric oxide-independent relaxations to acetylcholine and A23187 involve different routes of heterocellular communication. Role of gap junctions and phospholipase A2. Circulation Research 1999; 84: 53–63
  • Li X., Simard J. M. Multiple connexins form gap junction channels in rat basilar artery smooth muscle cells. Circulation Research 1999; 84: 1277–1284
  • Mombouli J. V., Vanhoutte P. M. Endothelium-derived hyperpolarizing factor(s): updating the unknown. Trends in Pharmacological Science 1997; 18: 252–256
  • Negishi M., Irie A., Nagata N., Ichikawa A. Specific binding of glycyrrhetinic acid to the rat liver membrane. Biochimica et Biophysica Acta 1991; 1066: 77–82
  • Quignard J., Feletou M., Thollon C., Vilaine J. P., Duhault J., Vanhoutte P. M. Potassium ions and endothelium-derived hyperpolarizing factor in guinea-pig carotid and porcine arteries. British Journal of Pharmacology 1999; 127: 27–34
  • Randall M. D., Alexander S. P., Bennett T., Boyd E. A., Fry J. R., Gardiner S. M., Kemp P. A., McCulloch A. I., Kendall D. A. An endogenous cannabinoid as an endothelium-derived vasorelaxant. Biochemical and Biophysical Research Communications 1996; 229: 114–120
  • Suzuki H., Nakano N., Ito M., Yamashita N., Sugiyama E., Maruyama M., Yano S. Effect of glycyrrhizin and glycyrrhetinic acid on production of O2−, H2O2 by macrophages. Igaku no Ayumi 1983; 124: 109–111
  • Taylor H. J., Chaytor A. T., Evans W. H., Griffith T. M. Inhibition of the gap junctional component of endothelium-dependent relaxations in rabbit iliac artery by 18-α glycyrrhetinic acid. British Journal of Pharmacology 1998; 125: 1–3
  • Ullian M. E., Hazen-Martin D. J., Walsh L. G., Davda R. K., Egan B. M. Carbenoxolone damages endothelium and enhances vasoconstrictor action in aortic rings. Hypertension 1996; 27: 1346–1352
  • Vapaatalo H., Linden I. B., Metsa-Ketela T., Kangasaho M., Laustiola K. Effect of carbenoxolone on phosphodiesterase and prostaglandin synthetase activities. Experentia 1978; 34: 384–385
  • Yamamoto Y., Imaeda K., Suzuki H. Endothelium-dependent hyperpolarization and intercellular electrical coupling in guinea-pig mesenteric arterioles. Journal of Physiology 1999; 514: 505–513
  • Yeager M., Nicholson B. J. Structure of gap junction intercellular channels. Current Opinion in Structural Biology 1996; 6: 183–192

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.