Publication Cover
Endothelium
Journal of Endothelial Cell Research
Volume 3, 1995 - Issue 1
8
Views
11
CrossRef citations to date
0
Altmetric
Review Article

The Effect of Hypoxia on Endothelial Cell Function

&
Pages 1-11 | Received 08 Sep 1994, Accepted 21 Nov 1994, Published online: 13 Jul 2009

References

  • Adams D., Barakeh J., Laskey R., van Breeman C. Ion channels and regulation of intracellular calcium in vascular endothelial cells. In FASEB J 1989; 3: 2389–2400
  • Arlas J., Alberts A., Brindle P., Claret F., Smeal T., Karin M., Feramisco J., Montminy M. Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. In Nature 1994; 370: 226–229
  • Arnould T., Michiels C., Alexandre I., Remade J. Effect of hypoxia upon intracellular calcium concentration of human endothelial cells. In J. Cell Physiol 1992; 152: 215–221
  • Assender J., Southgate K., Hallett M., Newby A. Inhibition of proliferation, but not of Ca2+ mobilization, by cAMP and GMP in rabbit aortic smooth muscle cells. In Biochem. J 1992; 288: 527–532
  • Badesch D., Orton E., Zapp L., Westcott J., Hester J., Voelkel N., Stenmark K. Decreased arterial wall prostaglandin production in neonatal calves with severe chronic pulmonary hypertension. In Am. J. Respir. Cell Mol. Biol 1989; 1: 489–498
  • Benitz W., Kelley R., Anderson C., Lorant D., Bernfield M. Endothelial heparan sulfate proteoglycan. I. Inhibitory-effects on smooth muscle cell proliferation. In Am. J. Respir. Cell Mol. Biol 1990; 2: 13–24
  • Bennie R., Packer C., Powell D., Jin N., Rhoades R. Biphasic contractile response of pulmonary artery to hypoxia. In Am. J. Physiol 1991; 261: L156–L163
  • Bhat G., Block E. Hypoxia directly increases serotonin transport by porcine pulmonary artery endothelial cell plasma membrane vesicles. In Am. J. Respir. Cell Mol. Biol 1990; 3: 363–367
  • Bhat G., Block E. Serotonin transport in reconstituted endothelial cell plasma membrane proteoliposomes: effect of hypoxia. In Am. J. Respir. Cell Mol. Biol 1992; 6: 633–638
  • Bland R., Demling R., Selinger S., Staub N. Effects of alveolar hypoxia on lung fluid and protein transport in unanesthetized sheep. In Circ. Res 1977; 40: 269–274
  • Block E. Interaction between oxygen and cell membranes: modification of membrane lipids to enhance pulmonary artery endothelial cell tolerance to hypoxia. In Exp. Lung. Res 1988; 14: 937–958
  • Bossu J., Elhamdani A., Feltz A. Voltage-dependent calcium entry in confluent bovine capillary endothelial cells. In Fed. Eur. Biochem. Soc. Lett 1992a; 299: 239–242
  • Bossu J., Elhamdani A., Feltz A., Tanzi F., Aunis D., Thierse D. Voltage-gated Ca2+ entry in isolated bovine capillary endothelial cells: evidence of new type of BAY K 8644-sensitive channel. In Pfluegers Arch 1992b; 420: 200–207
  • Bossu J., Feltz A., Rodeau J., Tanzi F. Voltage-dependent transient calcium currents in freshly dissociated capillary endothelial cells. Fed. Eur. Biochem. Soc. Lett 1989; 255: 377–380
  • Buchan K., Martin W. Modulation of barrier function of bovine aortic and pulmonary artery endothelial cells: dissociation from cytosolic calcium content. In Br. J. Pharmacol 1992; 107: 932–938
  • Busse R., Forstermann U., Matsuda H., Pohl U. The role of prostaglandins in the endothelium-mediated vasodilatory response to hypoxia. In Pflugers Arch 1984; 401: 77–83
  • Busse R., Pohl U., Kellner C., Klemm U. Endothelial cells are involved in the vasodilatory response to hypoxia. In Pflugers Arch 1983; 397: 78–80
  • Busse R., Trogisch G., Bassenge E. The role of endothelium in the control of vascular tone. In Basic Res. Cardiol 1985; 80: 475–490
  • Da Re S., Bertagnoli S., Fourment J., Reyrat J.-M., Kahn D. Intramolecular signal transduction within the FixJ transcriptional activator: in vitro evidence for the inhibitory effect of the phosphorylatable regulatory domain. In Nucleic Acids Research 1994; 22: 1555–1561
  • Daut J., Mailer-Rudolph W., von Beckerath N., Mehrke G., Gunther K., Goedel-Meinen I. Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. In Science 1990; 247: 1341–1344
  • Dempsey E., Stevens T., Durmowicz A., Stenmark K. Hypoxia-induced changes in the contraction, growth, and matrix synthetic properties of vascular cells. 1995
  • Dobrina A., Rossi F. Metabolic properties of freshly isolated bovine endothelial cells. In Biochimica et Biophysica Acta 1983; 762: 295–301
  • Doukas J., Cutler A., Boswell C., Joris I., Majno G. Reversible endothelial cell relaxation induced by oxygen and glucose deprivation: A model of ischemia in vitro. Am. J. Pathol 1994; 145: 211–219
  • Ercan Z. Role of endothelium in the secondary relaxation following contraction by various agonists in isolated rabbit superior mesenteric artery rings. In Arch. Int. Pharmacodyn 1989; 300: 107–113
  • Fandrey J., Frede S., Jelkmann W. Oxygen sensing by H2O2-generating heme proteins. In Annals New York Acad. Sci 1994; 341–343
  • Fandrey J., Seydel F., Siegers C.-P., Jelkmann W. Role of cytochrome P450 in the control of the production of erythropoietin. In Life Sci 1990; 47: 127–134
  • Farber H., Center D., Rounds S. Effect of ambient oxygen on cultured endothelial cells from different vascular beds. In Am. J. Physiol 1987; 253: H878–H883
  • Fishman A. Hypoxia on the pulmonary circulation. How and where it acts. In Circ. Res 1976; 38: 221–231
  • Furchgott R., Zawadzki J. The obligatory role of endothelial cells in relaxation of arterial smooth muscle by acetylcholine. In Nature 1980; 288: 373–376
  • Garcia J., Siflinger-Bimhoim A., Bizios R., Del Vecchio P., Fenton J., Malik A. Thrombin-induced increases in albumin clearance across cultured endothelial monolayers. In J. Cell Physiol 1986; 128: 96–104
  • Goldberg M., Dunning S., Bunn H. Regulation of the erythropoietin gene: Evidence that the oxygen sensor is a heme protein. In Science 1988; 242: 1412–1415
  • Gonzalez G., Montminy M. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. In Cell 1989; 59: 675–680
  • Graven K., Kornfeld H., Farber H. Identification of the 36KD endothelial cell hypoxia associated protein as glyceraldehyde-3-phosphate dehydrogenase. In Am. Rev. Resp. Dis 1993; 147: A270
  • Green R., Leffler C. Hypoxia stimulates prostacyclin synthesis by neonatal lungs. In Pediat. Res 1984; 18: 832–835
  • Griffith T., Edwards D., Newby A., Lewis M., Henderson A. Production of endothelium-derived relaxant factor is dependent on oxidative phosphorylation and extracellular calcium. In Cardiovasc Res 1986; 20: 7–12
  • Hamasaki Y., Tai H., Said S. Hypoxia stimulates prostacyclin generation by dog lung in vitro. Prostaglandins Leukotrienes Med 1982; 8: 311–316
  • Hansen T., Hazinski T., Bland R. Effects of asphyxia on lung fluid balance in baby lambs. In J. Clin. Invest 1984; 74: 370–376
  • Harrod K., Howard G., Olson J., Gillespie M. Hypoxia inducible factor (HIF)-l in bovine main pulmonary artery smooth muscle cells (PASMCs) cultured in low environmental oxygen. In FASEB J 1994; 8: A120
  • Hauge A. Hypoxia and pulmonary vascular resistance. The relative effects of pulmonary arterial and alveolar PO2. In Acta Physiol Scand 1969; 76: 121–130
  • Hescheler J., Delpiano M., Acker H., Pietrichka F. Ionic currents on type I cells of the rabbit carotid body measured by voltage-clamp experiments and the effect of hypoxia. In Brain Res 1989; 486: 79–88
  • Hieda H., Gomez-Sanchez C. Hypoxia increases endothelin release in bovine endothelial cells in culture, but epinephrine, norepinephrine, serotonin, histamine and angiotensin II do not. In Life Sciences 1990; 247: 247–251
  • Holden W., McCall E. Hypoxia-induced contractions of porcine pulmonary artery strips depend on intact endothelium. In Exp. Lung. Res 1984; 7: 101–112
  • Hopwood A., Lincoln J., Kirkpatrick K., Burnstock G. Adenosine 5′-triphosphate, adenosine and endothelium-derived relaxing factor in hypoxic vasodilatation of the heart. In Eur. J. Pharmacol 1989; 165: 323–326
  • Horwitz A., Duggan K., Buck C., Beckerle M., Burridge K. Interaction of plasma membrane fibronectin receptor with talin-a transmembrane linkage. In Nature 1986; 320: 531–533
  • Hoshino Y., Morrison K., Vanhoutte P. Mechanisms of hypoxic vasoconstriction in the canine isolated pulmonary artery: role of endothelium and sodium pump. In Am. J. Physiol 1994; 267: L120–Ll27
  • Hultgren J. High altitude pulmonary edema. Lung water and solute exchange, N. Staub. Marcel Dekker, Inc., New York 1978; 437–469
  • Humphries D., Lee S.-L., Fanburg B., Silbert J. Effects of hypoxia and hyperoxia on proteoglycan production by bovine pulmonary artery endothelial cells. In J. Cell Physiol 1986; 126: 249–253
  • Hynes R. Integrins: a family of cell surface receptors. In Cell 1987; 48: 549–554
  • Isaacson T., Hampl V., Weir E., Nelson D., Archer S. Increased endothelium-derived NO in hypertensive pulmonary circulation of chronically hypoxic rats. In J. Appl. Physiol 1994; 76: 933–940
  • Johns R., Linden J., Peach M. Endothelium-dependent relaxation and cyclic GMP accumulation in rabbit pulmonary artery are selectively impaired by moderate hypoxia. In Circ. Res 1989; 65: 1508–1515
  • Joseph P., Thompson B., Hales C. Effect of hypoxia on the secretion of platelet derived growth factor by bovine pulmonary artery endothelial cells. In Am. Rev. Resp. Dis 1990; 141: A346
  • Katayose D., Ohe M., Yamauchi K., Ogata M., Shirato K., Fujita H., Shibahara S., Takishima T. Increased expression of PDGF A- and B-chain genes in rat lungs with hypoxic pulmonary hypertension. In Am. J. Physiol 1993; 264: L100–L106
  • Kinasewitz G., Groome L., Marshall R., Leslie W., Diana J. Effect of hypoxia on permeability of pulmonary endothelium of canine visceral pleura. In J. Appl. Physiol 1986; 61: 554–560
  • Kourembanas S., McQuillan L., Leung G., Faller D. Nitric oxide regulates the expression of vasoconstrictors and growth factors by vascular endothelium under both normoxia and hypoxia. In J. Clin. Invest 1993; 92: 99–104
  • Lacombe C., Da Silva J.-L., Bruneval P., Fournier J.-G., Wending F., Casadevall N., Camilleri J.-P., Bariety J., Varet B., Tambourin P. Peritubular cells are the site of erythropoietin synthesis in the murine hypoxic kidney. In J. Clin. Invest 1988; 81: 620–623
  • Landolt C., Matthay M., Albertine K., Roos P., Wiener-Kronish J., Staub N. Overperfusion, hypoxia, and increased pressure cause only hydrostatic pulmonary edema in anesthetized sheep. In Circ. Res 1983; 52: 335–341
  • Leach R., Robertson T., Twort C., Ward J. Hypoxic vasoconstriction in rat pulmonary and mesenteric arteries. In Am. J. Physiol 1994; 266: L223–L231
  • Lee C., Yun Y., Hoeffler J., Habener J. Cyclic-AMP-responsive transcriptional activation of CREB-327 involves interdependent phsophorylated subdomains. In EMBO J 1990; 9: 4455–4465
  • Lee S.-L., Fanburg B. Glycolytic activity and enhancement of serotonin uptake by endothelial cells exposed to hypoxia/anoxia. In Circ. Res 1987; 60: 653–658
  • Li H., Elton T., Chen Y., Oparil S. Increased endothelin receptor gene expression in hypoxic rat lung. Am. J. Physiol 1994; 266: L553–LL560
  • Lockhart A., Saiag B. Altitude and the human pulmonary circulation. In Clin Sci 1981; 60: 599–605
  • Lopez-Barneo J., Lopez-Lopez J., Urena J., Gonzalez C. Chemotransduction in the carotid body: K+ current modulated by PO2 in type I chemoreceptor cells. In Science 1988; 241: 580–582
  • Lopez-Lopez J., Gonzalez C., Urena J., Lopez-Barneo J. Low PO2 selectively inhibits K+ channel activity in chemoreceptor cells of the mammalian carotid body. In J. Gen. Physiol 1989; 93: 1001–1015
  • Lynch D., Ansell P., Levene R. Effect of anoxia on gene expression in human endothelial cells. In J. Cell Biol 1988; 107: 581a
  • Madden M., Vender R., Friedman M. Effect of hypoxia on prostacyclin production in cultured pulmonary artery endothelium. In Prostaglandins 1986; 31: 1049–1062
  • Majack R., Goodman L., Dixit V. Cell surface thrombospondin in functionally essential for vascular smooth muscle cell proliferation. In J. Cell Biol 1988; 106: 415–422
  • Marshall C., Cooper D., Marshall B. Reduced availability of energy initiates pulmonary vasoconstriction. In Proc. Soc. Exp. Biol. Med 1988; 187: 282–286
  • Martin D., Grimbert F., Baconnier P., Benchetrit G. Effect of acute hypoxia on lung transvascular filtration in anesthetized dogs. In Eur. Bull. Respir 1983; 19: 7–1
  • Maxwell P., Pugh C., Ratcliffe P. Inducible operation of the erythropoietin 3′ enhancer in multiple cell lines: Evidence of a widespread oxygen-sensing mechanism. In Proc. Natl. Acad. Sci. USA 1993; 90: 2423–2427
  • McDonald R., Graven K., Farber H. Regulation of endothelial cell hypoxia associated proteins: the potential role of a heme binding protein. In Am. J. Respir. Crit. Care Med 1994; 194: A297
  • Mehrke G., Pohl U., Daut J. Effects of vasoactive agonists on the membrane potential of cultured bovine aortic and guinea-pig coronary endothelium. In J. Physiol 1991; 439: 277–299
  • Mertens S., Noll T., Spahr R., Krutzfeldt A., Piper H. Energetic response of coronary endothelial cells to hypoxia. In Am. J. Physiol 1990; 258: H689–H694
  • Messina E., Sun D., Koller A., Wolin M., Kaley G. Role of endothelium-derived prostaglandins in hypoxia-elicited arteriolar dilation in rat skeletal muscle. In Circ. Res 1992; 71: 790–796
  • Michiels C., Arnould T., Knott I., Dieu M., Remade J. Stimulation of prostaglandin synthesis by human endothelial cells exposed to hypoxia. In Am. J. Physiol 1993; 264: C866–C874
  • Michiels C., De Leener F., Arnould T., Dieu M., Remacle J. Hypoxia stimulates human endothelial cells to release smooth muscle cell mitogens: Role of prostaglandins and bFGF. In Exp. Cell Res 1994; 213: 43–54
  • Monson E., Veinstein M., Ditta G., Helinski D. The fixL protein of Rhizobium metiloti can be separated into a heme-binding oxygen-sensing domain and a functional C-terminal kinase domain. In Proc. Natl. Acad. Sci. USA 1992; 89: 4280–4284
  • Nakaki T., Nakayama M., Kato R. Inhibition by nitric oxide and nitric oxide producing vasodilators of DNA synthesis in vascular smooth muscle cells. In Eur. J. Pharmacol 1990; 189: 347–353
  • Ogawa S., Koga S., Kuwabara K., Brett J., Morrow B., Moms S., Bilezikian J., Silverstein S., Stem D. Hypoxia-induced increased permeability of endothelial mono-layers occurs through lowering of cellular CAMP levels. In Am J. Physiol 1992; 262: C546–C554
  • Oka M., Hasunuma K., Rodman D., McMurtry I. Inhibition of endothelium-derived relaxing factor causes vasoconstriction in hypertensive rat lungs. In Am. Rev. Resp. Dis 1992; 145: A208
  • Oka M., Hasunuma K., Webb S., Stelzner T., Rodman D., McMurtry I. EDRF suppresses an unidentified vasoconstrictor mechanism in hypertensive rat lungs. In Am. J. Physiol 1993; 264: L587–L597
  • Orton E., Reeves J., Stenmark K. Pulmonary vasodilation with structurally altered pulmonary vessels and pulmonary hypertension. In J. Appl. Physiol 1988; 65: 2459–2467
  • Park K., Rubin L., Gross S., Levi R. Nitric oxide is a mediator of hypoxic coronary vasodilation. Relation to adenosine and cyclooxygenase-derived metabolites. In Circ. Res 1992; 71: 992–1001
  • Parker F., Grangerm D., Taylor A. Estimates of isogravimetric capillary pressures during alveolar hypoxia. In Am. J. Physiol 1981; 241: H732–H739
  • Peake M., Harabin A., Brennan N., Sylvester J. Steady-state vascular responses to graded hypoxia in isolated lungs of five species. In J. Appl. Physiol 1981; 51: 1214–1219
  • Pearce W., Ashwal S., Cuevas J. Direct effects of graded hypoxia on intact and denuded rabbit cranial arteries. In Am. J. Physiol 1989; 257: H824–H833
  • Pearson P., Lin P., Evora P., Schaff H. Endothelium-dependent response of human internal mammary artery to hypoxia. In Am. J. Physiol 1993; 264: H376–H380
  • Perkett E., Badesch D., Roessler M., Stenmark K., Meyrich B. Insulin-like growth factor-I and pulmonary hypertension induced by continuous air enbolization in sheep. In Am. Rev. Respir. Cell Mol. Biol 1992; 6: 82–87
  • Pohl U., Busse R. Hypoxia stimulates release of endothelium-derived relaxant factor. In Am. J. Physiol 1989; 256: H1595–H1600
  • Pohl U., Busse R., Bassenge E. Endothelial cells as oxygen sensors. Vasodilatation: Vascular Smooth Muscle. Peptides, Autonomic Nerves, and Endothelium, P. Vanhoutte. Raven Press, Ltd., New York 1988; 483
  • Post J., Hume I., Archer S., Weir E. Direct role for potassium channel inhibition in hypoxic pulmonary, vasoconstriction. In Am. J. Physiol 1992; 262: C882–C890
  • Rabinovitch M., Konstam M., Gamble W., Papanicolaou N., Aronovitz M., Treves S., Reid L. Changes in pulmonary blood flow affect vascular response to chronic hypoxia in rats. In Circ. Res 1983; 52: 432–441
  • Rakugi H., Tabuchi Y., Nakamaru M., Nagano M., Higashimori K., Mikami H., Ogihara T., Suzuki N. Evidence for endothelin-1 release from resistance vessels of rats in response to hypoxia. In Biochem. Biophys. Res. Comm 1990; 169: 973–977
  • Revest P., Abbott J. Membrane ion channels in endothelial cells. In Trends Pharmacol. Sci 1992; 13: 404–407
  • Rodman D. Chronic hypoxia selectively augments rat pulmonary artery Ca 2+ and K+ channel-mediated relaxation. In Am. J. Physiol 1992; 263: L88–L94
  • Rodman D., Hasunuma K., Peach J., McMurtry I. Inhibitor of ATP-sensitive K+ channel alters neither hypoxic contraction nor relaxation of rat aorta. In Blood Vessels 1990a; 27: 365–368
  • Rodman D., Mallet J., McMurtry I. Difference in effect of inhibitors of energy metabolism on endothelium-dependent relaxation of rat pulmonary artery and aorta. In Am. J. Respir. Cell Mol. Biol 1991; 4: 237–242
  • Rodman D., Yamaguchi T., Hasunuma K., O'Brien R., McMurtry I. Effects of hypoxia on endothelium-dependent relaxation of rat pulmonary artery. In Am. J. Physiol 1990b; 258: L207–L214
  • Rodman D., Yamaguchi T., O'Brien R., McMurtry I. Hypoxic contraction of isolated rat pulmonary artery. In J. Pharmacol Exp. Ther 1988; 248: 952–957
  • Rounds S., McMurtry I. Inhibitors of oxidative ATP production cause transient vasoconstriction and block subsequent presser responses in rat lungs. In Circ. Res 1981; 48: 393–399
  • Rubanyi G., Vanhoutte P. Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium. In J. Physiol 1985; 364: 45–56
  • Schnittler H., Wilke A., Gress T., Suttorp N., Drenckhan D. Role of actin and myosin in the control of paracellular permeability in pig, rat and human vascular endothelium. In J. Physiol 1990; 431: 379–401
  • Segal S., Duling B. Conduction of vasomotor responses in arterioles: a role for cell-to-cell coupling?. Am. J. Physiol 1989; 256: H838–H845
  • Shasby D., Shasby S., Sullivan J., Peach M. Role of the citoskeleton in endothelial permeability. In Circ. Res 1981; 51: 657–661
  • Shaul P., North A., Brannon T., Ujiie K., Wells L., Nisen P., Lowenstein C., Snyder S., Star R. Hypoxia enhances endothelial and neuronal nitric oxide synthase gene expression in rat lung. In Ped. Res 1993; 26A
  • Shweiki D., Itin A., Soffer D., Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. In Nature 1992; 359: 843–848
  • Stasek J., Patterson C., Garcia J. Protein kinase C phosphorylates caldesmon77 and vimentin and enhances albumin permeability across cultured bovine pulmonary artery endothelial cells. In J. Cell Physiol 1992; 153: 62–75
  • Stelzner T., O'Brien R., Sato K., Weil J. Hypoxia-induced increases in pulmonary transvascular protein escape. Modulation by glucocorticoids. In J. Clin. Invest 1988; 82: 1840–1847
  • Stelzner T., O'Brien R., Yanagisawa M., Sakurai T., Sato K., Webb S., Zamora M., McMurtry I., Fisher J. Increased lung endothelin-1 production in rats with idiopathic pulmonary hypertension. In Am. J. Physiol 1992; 262: L614–L620
  • Stelzner T., Weil J., O'Brien R. Role of cyclic adenosine monophosphate in the induction of endothelial barrier properties. In J. Cell Physiol 1989; 139: 157–166
  • Stenmark K., Fasules J., Voelkel N., Henson J., Tucker A., Wilson H., Reeves J. Severe pulmonary hypertension and arterial adventitial changes in newborn calves at 4300 m. J. Appl. Physiol 1987; 62: 821–830
  • Stevens T., Cornfield D., McMurtry I., Rodman D. Acute reductions in PO2 depolarize pulmonary artery endothelial cells and decrease ‘Ca2+’i. In Am. J. Physiol 1994a; 266: H1416–H1421
  • Stevens T., Nakahashi Y., Cornfield D., McMurtry I., Cooper D., Rodman D. Ca2+ -inhibitable adenylyl cyclase modulates pulmonary artery endothelial cell barrier function. In Proc. Natl. Acad. Sci. USA 1994b, In Press
  • Sylvester J., McGowan C. The effects of agents that bind to cytochrome P-450 on hypoxic pulmonary vasoconstriction. In Circ. Res 1978; 43: 429–437
  • Voelkel N., Gerber J., McMurtry I., Nies A., Reeves J. Release of vasodilator prostaglandin, PGI2, from isolated rat lung during vasoconstriction. In Circ. Res 1981; 48: 207–213
  • Von Euler U., Lilestrand G. Observations on the pulmonary arterial blood pressure in the cat. In Acta Phys. Scandinav 1946; 12: 301–320
  • Wang G., Semenza G. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. In Proc. Natl. Acad. Sci. USA 1993a; 268: 21513–21518
  • Wang G., Semenza G. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. In Proc. Natl. Acad. Sci. USA 1993b; 90: 4304–4308
  • Warren J., Maltby N., MacCormack D., Barnes P. Pulmonary endothelium-derived relaxing factor is impaired in hypoxia. In Clin. Sci 1989; 77: 671–676
  • Whittaker N., Bunting S., Salmon J., Moncada S., Vane J., Johnson R., Morton D., Kinner J., Gorman R., McGuire J., Sun F. The chemical structure of prostaglandin X (prostacyclin). In Prostaglandins 1976; 12: 915–928
  • Wysolmerski R., Lagunoff D. Involvement of myosin light-chain kinase in endothelial cell retraction. In Proc. Nad. Acad. Sci. USA 1990; 87: 16–20
  • Yoshimoto S., Ishizaki Y., Sasaki T., Murota S.-I. Effect of carbon dioxide and oxygen on endothelin production by cultured porcine cerebral endothelial cells. In Stroke 1991; 22: 378–383
  • Yuan X.-J., Goldman W., Tod M., Rubin L., Blaustein M. Hypoxia reduces potassium currents in cultured rat pulmonary but not mesenteric arteries. In Am. J. Physiol 1993; 264: L116–L123
  • Yuan X.-J., Tod M., Rubin L., Blaustein M. Contrasting effects of hypoxia on tension in rat puhnonary and mesenteric arteries. In Am. J. Physiol 1990; 259: H281–H289
  • Zamora M., Dempsey E., Walchak S., Stelzner T. BQ 123, an ETA receptor antagonist, inhibits endothelin-l-mediated proliferation of human pulmonary artery smooth muscle cells. In Am. J. Resp. Cell Mol. Biol 1993; 9: 429–433

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.