Publication Cover
Endothelium
Journal of Endothelial Cell Research
Volume 7, 1999 - Issue 1
27
Views
110
CrossRef citations to date
0
Altmetric
Original Article

Identification of a Functional Leukocyte-Type NADPH Oxidase in Human Endothelial Cells : A Potential Atherogenic Source of Reactive Oxygen Species

, , , , &
Pages 11-22 | Received 28 Aug 1998, Published online: 13 Jul 2009

References

  • Anderson M. T., Staal F. J.T., Gitler C., Herzenberg L. A., Herzenberg L. A. Separation of oxidant-initiated and redox-regulated steps in the NF-kB signal transduction pathway. Proceedings of the National Academv of Science USA 1994; 91: 11527–11531
  • Aviram M., Rosenblat M., Etzioni A., Levy R. Activation of NADPH oxidase is required for macrophage-mediated oxidation of low-density lipoprotein. Metabolism 1996; 45(9)1069–1079
  • Badwey J. A., Curnutte J. T., Karnovsky M. L. Cispolyunsaturated fatty acids induce high levels of superoxide production by human neutrophils. Journal of Biological Chemistry 1981; 256: 12640–12643
  • Bromberg Y., Pick E. Unsaturated fatty acids as second messengers of superoxide generation by macrophages. Cellular Immunology 1983; 79: 240–252
  • Bromberg Y., Pick E. Activation of NADPH-dependent superoxide production in a cell-free system by sodium dodecyl sulfate. Journal of Biological Chemistry 1985; 260: 13539–13545
  • Burow S., Valet G. Flow-cytometry characterization of stimulation, free radical formation, peroxidase activity and phagocytosis of human granulocytes with 2,7-dichlorofluorescein (DCF). Eur. J. Cell Biol. 1987; 43: 128–133
  • Cross A. R. Inhibitors of the leukocyte superoxide generating oxidase: Mechanisms of action and methods for their elucidation. Free Radical Biology & Medicine 1990; 8: 71–93
  • Curnutte J. T. Activation of human neutrophil nicotinamide adenine dinucleotide phosphate, reduced (triphosphopyridine nucleotide, reduced) oxidase by arachidonic acid in a cell-free system. Journal of Clinical Investigation 1985; 75: 1740–1743
  • Daugherty A., Roselaar S. E. Lipoprotein oxidation as a mediator of atherogenesis: insights from pharmacological studies. Cardiovascular Research 1995; 29: 297–311
  • Harlow E., Lane D. In Antibodies: A Laboratory Manual. Cold Spring Harbor Press, Cold Spring Harbor, New York 1988
  • Heyneman R. A., Vercauteren R. E. Activation of a NADPH oxidase from horse polymorphonuclear leukocytes in a cell-free system. Journal of Leukocyte Biology 1984; 36: 751–759
  • Holland J. A., Pritchard K. A., Rogers N. J., Stemerman M. B. Perturbation of cultured human endothelial cells by atherogenic levels of low density lipoprotein. American Journal of Pathology 1988; 132: 474–478
  • Holland J. A., Pritchard K. A., Pappolla M. A., Wolin M. S., Rogers N. J., Stemerman M. B. Bradykinin induces superoxide anion release from human endothelial cells. Journal of Cellular Physiology 1990; 143: 21–25
  • Holland J. A., Pritchard K. A., Rogers N. J., Stemerman M. B. Atherogenic levels of low-density lipoprotein increase endocytotic activity in cultured human endothelial cells. American Journal of Pathology 1992; 140: 551–558
  • Holland J. A., Ziegler L. M., Meyer J. W. Atherogenic levels of low density lipoprotein increase hydrogen peroxide generation in cultured human endothelial cells: Possible mechanism of heightened endocytosis. Journal of Cellular Physiology 1996; 166: 144–151
  • Holland J. A., Meyer J. W., Schmitt M. E., Sauro M. D., Johnson D. K., Abdul-Karim R. W., Patel V., Ziegler L. M., Schillinger K. J., Small R. F., Lemanski L. F. Low-density lipoprotein stimulated peroxide production and endocytosis in cultured human endothelial cells: Mechanisms of action. Endothelium 1997; 5: 191–207
  • Holland J. A., Meyer J. W., Chang M.-M., O'Donnell R. W., Johnson D. K., Ziegler L. M. Thrombin stimulated reactive oxygen species production in cultured human endothelial cells. Endothelium 1998, in press
  • Jones S. A., Wood J. D., Coffey M. J., Jones O. T.G. The functional expression of p47-phox and p67-phox may contribute to the generation of superoxide by an NADPH oxidase-like system in human fibroblasts. Federation of European Biochemical Societies Letters 1994; 355: 178–182
  • Jones S. A., O'Donnell V. B., Wood J. D., Broughton J. P., Hughes E. J., Jones O. T.G. Expression of phagocyte NADPH oxidase components in human endothelial cells. American Journal of Physiology 1996; 271: H1626–H1634
  • Kukreja R. C., Kontos H. A., Hess M. L., Ellis E. F. PGH synthase and lipoxygenase generate superoxide in the presence of NADH or NADPH. Circulation Research 1986; 59: 612–619
  • Kuthan H., Ullrich V. Oxidase and oxygen function of the microsomal cytochrome P450 monooxygenase system. European Journal of Biochemistry 1982; 126: 583–588
  • Leusen J. H.W., Verhoeven A. J., Roos D. Interactions between the components of the human NADPH oxidase: Intrigues in the phox family. Journal of Laboratory Clinica Medicine 1996; 128: 461–476
  • Meier B. M., Cross A. R., Hancock J. T., Kaup F. J., Jones O. T.G. Identification of a superoxide-generating NADPH oxidase system in human fibroblasts. Biochemical Journal 1991; 275: 241–245
  • Meier B., Jesaitis A. J., Emmendorffer A., Roesler J., Quinn M. T. The cytochrome b-558 molecules involved in the fibroblast and polymorphonuclear leukocyte superoxide-generating NADPH oxidase systems are structurally and genetically distinct. Biochemical Journal 1993; 289: 481–486
  • Mohazzab H. K.M., Kaminski P. M., Wolin M. S. NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium. American Journal of Physiology 1994; 266: H2568–H2572
  • Nauseef N. W., Volpp B. D., McCormick S., Leidal K. G., Clark R. A. Assembly of the neutrophil respiratory burst oxidase. Protein kinase C promotes cytoskeletal and membrane association of the cytosolic oxidase components. Journal of Biological Chemistry 1991; 266: 5911–5917
  • Ohara Y., Peterson T. E., Harrison D. G. Hypercholesterolemia increases endothelial superoxide anion production. Journal of Clinical Investigation 1993; 91: 2546–2551
  • Patel V., Meyer J. W., Johnson D. K., Abdul-Karim R. W., Ziegler L. M., Kauffman L., Schillinger K. J., Lemanski L. F., Holland J. A. Protein kinase C inhibitors prevent cultured human endothelial cell stress fiber formation, but not heightened endocytosis. Endothelium 1996; 4: 207–218
  • Phan S. H., Gannon D. E., Varani J., Ryan U. S., Ward P. A. Xanthine oxidase activity in rat pulmonary artery endothelial cells and its alteration by activated neutrophils. American Journal of Pathology 1989; 134(6)1201–1211
  • Pritchard K. A., Tola R. R., Lin J. H.-C, Danishefsky K. J., Kurilla B. A., Holland J. A., Stemerman M. B. Native low density lipoprotein endothelial cell recruitment of mononuclear cells. Arteriosclerosis and Thrombosis 1991; 11: 1175–1181
  • Pritchard K. A., Grozsek L., Smalley D. M., Sessa W. C., Wu M., Villalon P., Wolin M. S., Stemerman M. B. Native low-density lipoprotein increases endothelial cell nitric oxide synthase generation of superoxide anion. Circulation Research 1995; 77: 510–518
  • Roos D., deBoer M., Kuribayashi F., Weening R. S., Segal A. W., Ahlin A., Nemet K., Hossle J. P., Bernatowska-Matuszkiewicz E., Middleton-Price H. Mutations in the X-linked and autosomal recessive forms of Chronic Granulomatous Disease. Blood 1996; 87: 1663–1681
  • Sambrook J., Fritsch E. F., Maniatis T. Extraction, purification and analysis of messenger RNA from eukaryotic cells. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Press, Cold Spring Harbor, New York 1989; 7.43–7.52
  • Simons J. M.'t, Hart B. A., Ip Vai Ching T. R.A.M., Van Dijk H., Labadie R. P. Metabolic activation of natural phenols into selective oxidative burst agonists by activated human neutrophils. Free Radical Biology and Medicine 1990; 8: 251–258
  • Stemerman M. B., Colton C., Morrel E. Perturbation of the endothelium. Progress in Hemostasis and Thrombosis, T. H Spaet. Grune & Stratton, Inc. 1984; Vol. 7: 289–324
  • Stolk J., Hiltermann T. J.N., Dijkman J. H., Verhoeven A. J. Characteristics of the inhibition of NADPH oxidase activation in neutrophils by apocynin, a methoxy-substituted catechol. American Journal of Respiratory Cell and Molecular Biology. 1994; 11: 95–102
  • Sumimoto H., Kage Y., Nunoi H., Sasaki H., Nose T., Fukumaki Y., Ohno M., Minakami S., Takeshige K. Role of Src homology 3 domains in assembly and activation of the phagocytic NADPH oxidase. Proceedings of the National Academy of Science USA 1994; 91: 5345–5349
  • 't Hart B. A. Metabolic activation of phenols by stimulated neutrophils: A concept for a selective type of anti-inflammatory drug. Biotechnology Therapeutics 1992; 3(3&4)119–135
  • van Hinsbergh V. W.M., Scheffer M., Havekes L., Kempen H. J.M. Role of endothelial cells and their products in the modification of low-density lipoproteins. Biochimica et Biophysica Acta 1986; 878: 49–64
  • Verhoeven A. J., Bolscher B. G.J.M., Meerhof L. J., van Zwieten R., Keijer J., Weening R. S., Roos D. Characterization of two monoclonal antibodies against cytochrome b558 of human neutrophils. Blood 1989; 6(1)1686–1694
  • Weber C., Erl W., Pietsch A., Strobel M., Ziegler-Heitbrock H. W.L., Weber P. C. Antioxidants inhibit monocyte adhesion by suppressing nuclear factor-kB mobilization and induction of vascular cell adhesion molecule-1 in endothelial cells stimulate to generate radicals. Arteriosclerosis and Thrombosis 1994; 14: 1665–1673
  • Wieland E., Parthasarathy S., Steinberg D. Peroxidase-dependent metal-independent oxidation of low density lipoprotein in vitro: A model for in vivo oxidation. Proceedings of the National Academy of Science USA 1993; 90: 5929–5933
  • Zulueta J. J., Yu F.-S., Hertig I. A., Thannickal V. J., Hassoun P. M. Release of hydrogen peroxide in response to hypoxia-regeneration: Role of an NAD(P)H oxidase-like enzyme in endothelial cell plasma membrane. American Journal of Respiratory Cell and Molecular Biology 1995; 12: 41–49

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.