219
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Frequency Ranges of Heart Rate Variability Related to Autonomic Nerve Activity in the Mouse

, , , &
Pages 182-190 | Received 21 Dec 2010, Accepted 04 Feb 2011, Published online: 03 Oct 2011

REFERENCES

  • Malpas SC. Neural influences on cardiovascular variability: possibilities and pitfalls. Am J Physiol 2002; 282:H6–H20.
  • Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation 1992; 84:482–492.
  • Parati G, Saul JP, Rienzo MD, Mancia G. Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation – a critical appraisal. Hypertension 1995; 25:1276–1286.
  • Task Force of the European Society of Cardiology and the North American Society of Pacing Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 1996; 93:1043–1065.
  • Farah VMA, Joaquim LF, Irigoyen MC, Morris M. Cholinergic input is critical in the regulation of heart rate variability and stress reactivity in mice. Hypertension 2003; 42:411.
  • Malliani A, Lombardi F, Pagani M. Power spectrum analysis of heart rate variability: a tool to explore neural regulatory mechanisms. Br Heart J 1994; 71:1–2.
  • Otzenberger H, Cronfier C, Simon C, . Dynamic heart rate variability: a tool for exploring sympathovagal balance continuously during sleep in men. Am J Physiol Heart Circ Physiol 1998; 275:H946–H950.
  • Aoi W, Takanami Y, Kawai Y, . Relaxant effect of microtitan via regulation of autonomic nerve activity in mice. Life Sci 2009; 85:408–411.
  • Mani AR, Ollosson R, Mani Y, Ippolito S, Moore KP. Heart rate dynamics in iNOS knockout mice. Life Sci 2006; 79:1593–1599.
  • Ecker PM, Lin CC, Powers J, . Effect of targeted deletions of β1- and β2-adrenergic-receptor subtypes on heart rate variability. Am J Physiol Heart Circ Physiol 2006; 290:H192–H199.
  • Gehrmann J, Hammer PE, Maguire CT, . Phenotypic screening for heart rate variability in the mouse. Am J Physiol Heart Circ Physiol 2000; 279:H733–H740.
  • Wickman K, Nemec J, Gendler SJ, Clapham DE. Abnormal heart rate regulation in GIRK4 knockout mice. Neuron 1998; 20:103–114.
  • Janssen BJA, Leenders PJA, Smits JFM. Short-term and long-term blood pressure and heart rate variability in the mouse. Am J Physiol Regul Integr Comp Physiol 2000; 278:R215–R225.
  • Baudrie V, Laude D, Elghozi JL. Optimal frequency ranges for extracting information on cardiovascular autonomic control from the blood pressure and pulse interval spectrograms in mice. Am J Physiol Regul Integr Comp Physiol 2007; 292:R904–R912.
  • Deck J, Bibevski S, Gnecchi-Ruscone T, . α7-Nicotinic acetylcholine receptor subunit is not required for parasympathetic control of the heart in the mouse. Physiol Genomics 2005; 22:86–92.
  • Farah VMA, Joaquim LF, Bernatova I, Morris M. Acute and chronic stress influence blood pressure variability in mice. Physiol Behav 2004; 83:135–142.
  • Howden R, Liu E, Miller-DeGraff L, . The genetic contribution to heart rate and heart rate variability in quiescent mice. Am J Physiol Heart Circ Physiol 2008; 295:H59–H68.
  • Xue B, Skala K, Jones TA, Hay M. Diminished baroreflex control of heart rate responses in otoconia-deficient C57BL/6JEi head tilt mice. Am J Physiol Heart Circ Physiol 2004; 287:H741–H747.
  • Tsai ML, Huang JJ, Chen CC, Chen CC. External output connector and cable for wire electrode recording in freely moving mouse. Biomed Eng Appl Basic Comm 2007; 19:1–5.
  • Stauss HM, Stegmann JU, Persson PB, Häbler HJ. Frequency response characteristics of sympathetic transmission to skin vascular smooth muscles in rats. Am J Physiol Regul Integr Comp Physiol 1999; 46:R591–R600.
  • Katona PG, Mclean M, Dighton DH, Guz A. Sympathetic and parasympathetic cardiac control in athletes and nonathletes at rest. J Appl Physiol Respirat Environ Exerc Physiol 1982; 52(6):1652–1657.
  • Stauss HM. Heart rate variability. Am J Physiol Regul Integr Comp Physiol 2003; 285:R927–R931.
  • Hedman AE, Hartikainen JEK, Tahvanainen KUO, Hakumäki MO. The high frequency component of heart rate variability reflects cardiac parasympathetic modulation rather than parasympthetic ‘tone’. Acta Physiol Scand 1995; 155:267–273.
  • Hedman AE, Tahvanainen KUO, Hartikainen JEK, Hakumäki MOK. Effect of sympathetic modulation and sympathovagal interaction on heart rate variability in anaesthetized dogs. Acta Physiol Scand 1995; 155:205–214.
  • Tsai ML, Chu LW, Chai CY, Yen CT. Frequency dependent sympathetic modulation of vasomotor tone in the anesthetized rat. Neurosci Lett 1997; 221:109–112.
  • Malpas SC. The rhythmicity of sympathetic nerve activity. Prog Neurobiol 1998; 56:65–96.
  • Tseng WT, Chen RF, Tsai ML, Yen CT. Correlation of the discharges of rostral ventrolateral medullary neurons with the low-frequency sympathetic rhythm in rats. Neurosci Lett 2009; 454(1):22–27.
  • Just A, Faulhaber J, Ehmke H. Autonomic cardiovascular control in conscious mice. Am J Physiol Regul Integr Comp Physiol 2000; 279:R2214–R2221.
  • Zuberi Z, Birnbaumer L, Tinker A. The role of inhibitory heterotrimeric G proteins in the control of in vivo heart rate dynamics. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1822–R1830.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.