163
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Nitrosation-modulating effect of ascorbate in a model dynamic system of coexisting nitric oxide and superoxide

&
Pages 552-562 | Received 08 Sep 2009, Published online: 26 Feb 2010

References

  • Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev 2007;87:315–424.
  • Nauser T, Koppenol WH. The rate constant of the reaction of superoxide with nitrogen monoxide: approaching the diffusion limit. J Phys Chem A 2002;106:4084–4086.
  • Huie RE, Padmaja S. The reaction of NO with superoxide. Free Radic Res Commun 1993;18:195–199.
  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 1990;87:1620–1624.
  • Pfeiffer S, Gorren AC, Schmidt K, Werner ER, Hansert B, Bohle DS, Mayer B. Metabolic fate of peroxynitrite in aqueous solution. Reaction with nitric oxide and pH-dependent decomposition to nitrite and oxygen in a 2:1 stoichiometry. J Biol Chem 1997;272:3465–3470.
  • Pryor WA, Lemercier JN, Zhang H, Uppu RM, Squadrito GL. The catalytic role of carbon dioxide in the decomposition of peroxynitrite. Free Radic Biol Med 1997;23:331–338.
  • Darley-Usmar V, Wiseman H, Halliwell B. Nitric oxide and oxygen radicals: a question of balance. FEBS Lett 1995;369: 131–135.
  • Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol 1996;271:C1424–C1437.
  • Williams DLH. Nitrosation. Cambridge, UK: Cambridge University Press; 1988.
  • Galkin A, Moncada S. S-nitrosation of mitochondrial complex I depends on its structural conformation. J Biol Chem 2007;282:37448–37453.
  • Stamler JS, Sun QA, Hess DT. A SNO storm in skeletal muscle. Cell 2008;133:33–35.
  • Mayer B, Kleschyov AL, Stessel H, Russwurm M, Munzel T, Koesling D, Schmidt K. Inactivation of soluble guanylate cyclase by stoichiometric S-nitrosation. Mol Pharmacol 2008; 75:886–891.
  • Foster MW, Liu L, Zeng M, Hess DT, Stamler JS. A genetic analysis of nitrosative stress. Biochemistry 2009;48:792–799.
  • Hebels DG, Jennen DG, Kleinjans JC, de Kok TM. Molecular signatures of N-nitroso compounds in Caco-2 cells: implications for colon carcinogenesis. Toxicol Sci 2009;108: 290–300.
  • Rossig L, Fichtlscherer B, Breitschopf K, Haendeler J, Zeiher AM, Mulsch A, Dimmeler S. Nitric oxide inhibits caspase-3 by S-nitrosation in vivo. J Biol Chem 1999;274: 6823–6826.
  • Mitchell DA, Morton SU, Fernhoff NB, Marletta MA. Thioredoxin is required for S-nitrosation of procaspase-3 and the inhibition of apoptosis in Jurkat cells. Proc Natl Acad Sci USA 2007;104:11609–11614.
  • Tricker AR, Preussmann R. Carcinogenic N-nitrosamines in the diet: occurrence, formation, mechanisms and carcinogenic potential. Mutat Res 1991;259:277–289.
  • Martelli A, Robbiano L, Grossi S, Mattioli F, Brambilla G. Formation of DNA-damaging N-nitroso compounds from the interaction of calcium-channel blockers with nitrite. Toxicology 2007;238:211–215.
  • Mirvish SS. Role of N-nitroso compounds (NOC) and N-nitrosation in etiology of gastric, esophageal, nasopharyngeal and bladder cancer and contribution to cancer of known exposures to NOC. Cancer Lett 1995;93:17–48.
  • Lewis RS, Tannenbaum SR, Deen WM. Kinetics of N-nitrosation in oxygenated nitric oxide solutions at physiological pH: role of nitrous anhydride and effects of phosphate and chloride. J Am Chem Soc 1995;117:3933–3939.
  • Lewis RS, Tamir S, Tannenbaum SR, Deen WM. Kinetic analysis of the fate of nitric oxide synthesized by macrophages in vitro. J Biol Chem 1995;270:29350–29355.
  • Espey MG, Thomas DD, Miranda KM, Wink DA. Focusing of nitric oxide mediated nitrosation and oxidative nitrosylation as a consequence of reaction with superoxide. Proc Natl Acad Sci USA 2002;99:11127–11132.
  • Jourd’heuil D. Increased nitric oxide-dependent nitrosylation of 4,5-diaminofluorescein by oxidants: implications for the measurement of intracellular nitric oxide. Free Radic Biol Med 2002;33:676–684.
  • Miles AM, Gibson MF, Kirshina M, Cook JC, Pacelli R, Wink D, Grisham MB. Effects of superoxide on nitric oxide-dependent N-nitrosation reactions. Free Radic Res 1995;23: 379–390.
  • Hu TM, Hayton WL, Morse MA, Mallery SR. Dynamic and biphasic modulation of nitrosation reaction by superoxide dismutases. Biochem Biophys Res Commun 2002;295: 1125–1134.
  • Mirvish SS, Wallcave L, Eagen M, Shubik P. Ascorbate-nitrite reaction: possible means of blocking the formation of carcinogenic N-nitroso compounds. Science 1972;177: 65–68.
  • Licht WR, Tannenbaum SR, Deen WM. Use of ascorbic acid to inhibit nitrosation: kinetic and mass transfer considerations for an in vitro system. Carcinogenesis 1988;9:365–372.
  • Suzuki H, Iijima K, Scobie G, Fyfe V, McColl KE. Nitrate and nitrosative chemistry within Barrett’s oesophagus during acid reflux. Gut 2005;54:1527–1535.
  • Licht WR, Fox JG, Deen WM. Effects of ascorbic acid and thiocyanate on nitrosation of proline in the dog stomach. Carcinogenesis 1988;9:373–377.
  • Bartsch H, Ohshima H, Pignatelli B. Inhibitors of endogenous nitrosation. Mechanisms and implications in human cancer prevention. Mutat Res 1988;202:307–324.
  • Suzuki H, Iijima K, Moriya A, McElroy K, Scobie G, Fyfe V, McColl KE. Conditions for acid catalysed luminal nitrosation are maximal at the gastric cardia. Gut 2003;52:1095–1101.
  • Iijima K, Grant J, McElroy K, Fyfe V, Preston T, McColl KE. Novel mechanism of nitrosative stress from dietary nitrate with relevance to gastro-oesophageal junction cancers. Carcinogenesis 2003;24:1951–1960.
  • Brambilla G, Martelli A, Sottofattori E. Nitrosation of propranolol under simulated gastric conditions. Carcinogenesis 1995;16:1239–1242.
  • Combet E, Paterson S, Iijima K, Winter J, Mullen W, Crozier A, Preston T, McColl KE. Fat transforms ascorbic acid from inhibiting to promoting acid-catalysed N-nitrosation. Gut 2007;56:1678–1684.
  • Kosaka H, Wishnok JS, Miwa M, Leaf CD, Tannenbaum SR. Nitrosation by stimulated macrophages. Inhibitors, enhancers and substrates. Carcinogenesis 1989;10:563–566.
  • Espey MG, Miranda KM, Thomas DD, Wink DA. Distinction between nitrosating mechanisms within human cells and aqueous solution. J Biol Chem 2001;276:30085–30091.
  • Espey MG, Miranda KM, Pluta RM, Wink DA. Nitrosative capacity of macrophages is dependent on nitric-oxide synthase induction signals. J Biol Chem 2000;275:11341–11347.
  • Nishikimi M. Oxidation of ascorbic acid with superoxide anion generated by the xanthine-xanthine oxidase system. Biochem Biophys Res Commun 1975;63:463–468.
  • Kurz CR, Kissner R, Nauser T, Perrin D, Koppenol WH. Rapid scavenging of peroxynitrous acid by monohydroascorbate. Free Radic Biol Med 2003;35:1529–1537.
  • Kirsch M, Korth HG, Sustmann R, de Groot H. The pathobiochemistry of nitrogen dioxide. Biol Chem 2002;383:389–399.
  • Kirsch M, de Groot H. Ascorbate is a potent antioxidant against peroxynitrite-induced oxidation reactions. Evidence that ascorbate acts by re-reducing substrate radicals produced by peroxynitrite. J Biol Chem 2000;275:16702–16708.
  • Bartlett D, Church DF, Bounds PL, Koppenol WH. The kinetics of the oxidation of L-ascorbic acid by peroxynitrite. Free Radic Biol Med 1995;18:85–92.
  • Squadrito GL, Jin X, Pryor WA. Stopped-flow kinetic study of the reaction of ascorbic acid with peroxynitrite. Arch Biochem Biophys 1995;322:53–59.
  • Wheeler GL, Andrejack J, Wiersma JH, Lott RF. 2,3-Naphthotriazole as a gravimetric, spectrophotometric, and fluormetric reagent for the determination of silver. Anal Chim Acta 1969;46:239–245.
  • Veltman RH, Sanders MG, Persijn ST, Peppelenbos HW, Oosterhaven J. Decreased ascorbic acid levels and brown core development in pears (Pyrus communis L. cv. Conference). Physiol Plant 1999;107:39–45.
  • Drummer C, Ludke S, Spannagl M, Schramm W, Gerzer R. The nitric oxide donor SIN-1 is a potent inhibitor of plasminogen activator inhibitor release from stimulated platelets. Thromb Res 1991;63:553–556.
  • Wahler GM, Dollinger SJ. Nitric oxide donor SIN-1 inhibits mammalian cardiac calcium current through cGMP-dependent protein kinase. Am J Physiol 1995;268:C45–C54.
  • Sjoholm A. Nitric oxide donor SIN-1 inhibits insulin release. Am J Physiol 1996;271:C1098–C1102.
  • Polte T, Oberle S, Schroder H. The nitric oxide donor SIN-1 protects endothelial cells from tumor necrosis factor-alpha-mediated cytotoxicity: possible role for cyclic GMP and heme oxygenase. J Mol Cell Cardiol 1997;29:3305–3310.
  • Hinz B, Schroder H. The nitric oxide donor SIN-1 is free of tolerance and maintains its cyclic GMP stimulatory potency in nitrate-tolerant LLC-PK1 cells. Pharm Res 1999;16:633–636.
  • Xu LY, Yang JS, Link H, Xiao BG. SIN-1, a nitric oxide donor, ameliorates experimental allergic encephalomyelitis in Lewis rats in the incipient phase: the importance of the time window. J Immunol 2001;166:5810–5816.
  • Stojanovic MO, Ziolo MT, Wahler GM, Wolska BM. Anti-adrenergic effects of nitric oxide donor SIN-1 in rat cardiac myocytes. Am J Physiol Cell Physiol 2001;281:C342–C349.
  • Rabkin SW, Klassen SS. Nitric oxide differentially regulates the gene expression of caspase genes but not some autophagic genes. Nitric Oxide 2007;16:339–347.
  • Singh IN, Sullivan PG, Hall ED. Peroxynitrite-mediated oxidative damage to brain mitochondria: protective effects of peroxynitrite scavengers. J Neurosci Res 2007;85:2216–2223.
  • Siegemund M, Van Bommel J, Sinaasappel M, Schwarte LA, Studer W, Girard T, Vollebregt K, Ince C. The NO donor SIN-1 improves intestinal-arterial P(CO(2)) gap in experimental endotoxemia: an animal study. Acta Anaesthesiol Scand 2007;51:693–700.
  • Liu ZW, Lei T, Zhang T, Yang Z. Peroxynitrite donor impairs excitability of hippocampal CA1 neurons by inhibiting voltage-gated potassium currents. Toxicol Lett 2007;175:8–15.
  • An Z, DiCostanzo CA, Moore MC, Edgerton DS, Dardevet DP, Neal DW, Cherrington AD. Effects of the nitric oxide donor SIN-1 on net hepatic glucose uptake in the conscious dog. Am J Physiol Endocrinol Metab 2008;294:E300–E306.
  • Ashki N, Hayes KC, Bao F. The peroxynitrite donor 3-morpholinosydnonimine induces reversible changes in electrophysiological properties of neurons of the guinea-pig spinal cord. Neuroscience 2008;156:107–117.
  • Feelisch M, Ostrowski J, Noack E. On the mechanism of NO release from sydnonimines. J Cardiovasc Pharmacol 1989;14 (Suppl 11):S13–S22.
  • Bohn H, Schonafinger K. Oxygen and oxidation promote the release of nitric oxide from sydnonimines. J Cardiovasc Pharmacol 1989;14(Suppl 11):S6–S12.
  • Singh RJ, Hogg N, Joseph J, Konorev E, Kalyanaraman B. The peroxynitrite generator, SIN-1, becomes a nitric oxide donor in the presence of electron acceptors. Arch Biochem Biophys 1999;361:331–339.
  • Blanchard B, Servy C, Ducrocq C. Chemical evaluation of compounds as nitric oxide or peroxynitrite donors using the reactions with serotonin. Free Radic Res 2001;34:189–191.
  • Zhang X, Kim WS, Hatcher N, Potgieter K, Moroz LL, Gillette R, Sweedler JV. Interfering with nitric oxide measurements. 4,5-diaminofluorescein reacts with dehydroascorbic acid and ascorbic acid. J Biol Chem 2002;277:48472–48478.
  • Hu TM, Hayton WL, Mallery SR. Kinetic modeling of nitric-oxide-associated reaction network. Pharm Res 2006;23: 1702–1711.
  • Lancaster JR Jr. Nitroxidative, nitrosative, and nitrative stress: kinetic predictions of reactive nitrogen species chemistry under biological conditions. Chem Res Toxicol 2006;19: 1160–1174.
  • Lim CH, Dedon PC, Deen WM. Kinetic analysis of intracellular concentrations of reactive nitrogen species. Chem Res Toxicol 2008;21:2134–2147.
  • Thomson L, Trujillo M, Telleri R, Radi R. Kinetics of cytochrome c2+ oxidation by peroxynitrite: implications for superoxide measurements in nitric oxide-producing biological systems. Arch Biochem Biophys 1995;319:491–497.
  • Tarpey MM, Fridovich I. Methods of detection of vascular reactive species: nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite. Circ Res 2001;89:224–236.
  • Bartosz G. Use of spectroscopic probes for detection of reactive oxygen species. Clin Chim Acta 2006;368:53–76.
  • Kytzia A, Korth HG, Sustmann R, de Groot H, Kirsch M. On the mechanism of the ascorbic acid-induced release of nitric oxide from N-nitrosated tryptophan derivatives: scavenging of NO by ascorbyl radicals. Chem Eur J 2006;12: 8786–8797.
  • Kissner R, Nauser T, Bugnon P, Lye PG, Koppenol WH. Formation and properties of peroxynitrite as studied by laser flash photolysis, high-pressure stopped-flow technique, and pulse radiolysis. Chem Res Toxicol 1997;10:1285–1292.
  • Coddington JW, Hurst JK, Lymar SV. Hydroxyl radical formation during peroxynitrous acid decomposition. J Am Chem Soc 1999;121:2438–2443.
  • Lymar SV, Hurst JK. Rapid reaction between peroxonitrite ion and carbon dioxide: implications for biological activity. J Am Chem Soc 1995;117:8867–8868.
  • Czapski G, Goldstein S. The role of the reactions of. NO with superoxide and oxygen in biological systems: a kinetic approach. Free Radic Biol Med 1995;19:785–794.
  • Goldstein S, Czapski G. Reactivity of peroxynitrite versus simultaneous generation of (*)NO and O(2)(*)(-) toward NADH. Chem Res Toxicol 2000;13:736–741.
  • Goldstein S, Czapski G. Mechanism of the nitrosation of thiols and amines by oxygenated NO solutions: the nature of the nitrosating intermediates. J Am Chem Soc 1996;118:3419–3425.
  • Treinin A, Hayon E. Absorption spectra and reaction kinetics of NO2, N2O3, and N2O4 in aqueous solution. J Am Chem Soc 1970;92:5821–5828.
  • Jourd’heuil D, Jourd’heuil FL, Kutchukian PS, Musah RA, Wink DA, Grisham MB. Reaction of superoxide and nitric oxide with peroxynitrite. Implications for peroxynitrite-mediated oxidation reactions in vivo. J Biol Chem 2001;276: 28799–28805.
  • Behar D, Czapski G, Rabani J, Dorfman LM, Schwarz HA. Acid dissociation constant and decay kinetics of the perhydroxyl radical. J Phys Chem 1970;74:3209–3213.
  • Behar D, Czapski G, Duchovny I. Carbonate radical in flash photolysis and pulse radiolysis of aqueous carbonate solutions. J Phys Chem 1970;74:2206–2210.
  • Czapski G, Holcman J, Bielski BH. Reactivity of nitric oxide with simple short-lived radicals in aqueous solutions. J Am Chem Soc 1994;116:11465–11469.
  • NDRL/NIST Solution Kinetics Database on the Web: NIST Standard Reference Database 40. National Institute of Standards and Technology, Gaithersburg, MD; Available online at: http://kinetics.nist.gov/solution/, accessed 15 December 2009.
  • Rao PS, Hayon E. Oxidation of aromatic amines and diamines by OH radicals. Formation and ionization constants of amine cation radicals in water. J Phys Chem 1975;79: 1063–1066.
  • Holm P, Kankaanranta H, Metsa-Ketela T, Moilanen E. Radical releasing properties of nitric oxide donors GEA 3162, SIN-1 and S-nitroso-N-acetylpenicillamine. Eur J Pharmacol 1998;346:97–102.
  • Pryor WA, Squadrito GL. The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am J Physiol 1995;268:L699–L722.
  • Khan MT, Martell AE. Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen. I. Cupric and ferric ion catalyzed oxidation. J Am Chem Soc 1967;89: 4176–4185.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.