5,392
Views
392
CrossRef citations to date
0
Altmetric
REVIEW

2′,7′-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: Forty years of application and controversy

, , , &
Pages 587-604 | Received 14 Jul 2009, Published online: 07 Apr 2010

References

  • Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol 2003;552:335–344.
  • Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 2000;279: L1005–L1028.
  • Sies H. Oxidative stress: from basic research to clinical application. Am J Med 1991;91:31S–38S.
  • Chandel NS, Schumacker PT. Cellular oxygen sensing by mitochondria: old questions, new insight. J Appl Physiol 2000; 88:1880–1889.
  • Droge W. Oxidative stress and aging. Adv Exp Med Biol 2003; 543:191–200.
  • Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002;82:47–95.
  • Mates JM, Segura JA, Alonso FJ, Marquez J. Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis, and carcinogenesis. Arch Toxicol 2008; 82:273–299.
  • Nishikawa M. Reactive oxygen species in tumor metastasis. Cancer Lett 2008;266:53–59.
  • Lau AT, Wang Y, Chiu JF. Reactive oxygen species: current knowledge and applications in cancer research and therapeutic. J Cell Biochem 2008;104:657–667.
  • Bekyarova GY, Ivanova DG, Madjova VH. Molecular mechanisms associating oxidative stress with endothelial dysfunction in the development of various vascular complications in diabetes mellitus. Folia Med (Plovdiv) 2007; 49:13–19.
  • Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 2008; 57:1446–1454.
  • Hsiai T, Berliner JA. Oxidative stress as a regulator of murine atherosclerosis. Curr Drug Targets 2007;8:1222–1229.
  • Bonomini F, Tengattini S, Fabiano A, Bianchi R, Rezzani R. Atherosclerosis and oxidative stress. Histol Histopathol 2008;23:381–390.
  • Paravicini TM, Touyz RM. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care 2008;31(Suppl 2): S170–S180.
  • Lee MY, Griendling KK. Redox signaling, vascular function, and hypertension. Antioxid Redox Signal 2008;10: 1045–1059.
  • Calabrese V, Guagliano E, Sapienza M, Mancuso C, Butterfield DA, Stella AM. Redox regulation of cellular stress response in neurodegenerative disorders. Ital J Biochem 2006;55:263–282.
  • Shi Q, Gibson GE. Oxidative stress and transcriptional regulation in Alzheimer disease. Alzheimer Dis Assoc Disord 2007;21:276–291.
  • Kohen R, Nyska A. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 2002; 30:620–650.
  • Tarpey MM, Fridovich I. Methods of detection of vascular reactive species: nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite. Circ Res 2001;89:224–236.
  • Soh N. Recent advances in fluorescent probes for the detection of reactive oxygen species. Anal Bioanal Chem 2006; 386: 532–543.
  • Bartosz G. Use of spectroscopic probes for detection of reactive oxygen species. Clin Chim Acta 2006;368: 53–76.
  • Wardman P. Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic Biol Med 2007;43:995–1022.
  • Brandt R, Keston AS. Synthesis of diacetyldichlorofluorescin: a stable reagent for fluorometric analysis. Anal Biochem 1965;11:6–9.
  • Afri M, Frimer AA, Cohen Y. Active oxygen chemistry within the liposomal bilayer. Part IV: Locating 2′,7′-dichlorofluorescein (DCF), 2′,7′-dichlorodihydrofluorescein (DCFH) and 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) in the lipid bilayer. Chem Phys Lipids 2004; 131:123–133.
  • Loetchutinat C, Kothan S, Dechsupa S, Meesungnoen J, Jay-Gerin J-P, Mankhetkorn S. Spectrofluorometric determination of intracellular levels of reactive oxygen species in drug-sensitive and drug-resistant cancer cells using the 2′,7′-dichlorofluorescein diacetate assay. Radiat Phys Chem 2005;72:323–331.
  • Possel H, Noack H, Augustin W, Keilhoff G, Wolf G. 2,7-Dihydrodichlorofluorescein diacetate as a fluorescent marker for peroxynitrite formation. FEBS Lett 1997;416: 175–178.
  • Ischiropoulos H, Gow A, Thom SR, Kooy NW, Royall JA, Crow JP. Detection of reactive nitrogen species using 2,7-dichlorodihydrofluorescein and dihydrorhodamine 123. Methods Enzymol 1999;301:367–373.
  • Wrona M, Wardman P. Properties of the radical intermediate obtained on oxidation of 2′,7′-dichlorodihydrofluorescein, a probe for oxidative stress. Free Radic Biol Med 2006;41: 657–667.
  • Royall JA, Ischiropoulos H. Evaluation of 2′,7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch Biochem Biophys 1993;302:348–355.
  • Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland RP. A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem 1997;253: 162–168.
  • Chignell CF, Sik RH. A photochemical study of cells loaded with 2′,7′-dichlorofluorescin: implications for the detection of reactive oxygen species generated during UVA irradiation. Free Radic Biol Med 2003;34:1029–1034.
  • Bilski P, Belanger AG, Chignell CF. Photosensitized oxidation of 2′,7′-dichlorofluorescin: singlet oxygen does not contribute to the formation of fluorescent oxidation product 2′,7′-dichlorofluorescein. Free Radic Biol Med 2002;33:938–946.
  • Marchesi E, Rota C, Fann YC, Chignell CF, Mason RP. Photoreduction of the fluorescent dye 2′-7′-dichlorofluorescein: a spin trapping and direct electron spin resonance study with implications for oxidative stress measurements. Free Radic Biol Med 1999;26:148–161.
  • Afzal M, Matsugo S, Sasai M, Xu B, Aoyama K, Takeuchi T. Method to overcome photoreaction, a serious drawback to the use of dichlorofluorescin in evaluation of reactive oxygen species. Biochem Biophys Res Commun 2003;304:619–624.
  • Bass DA, Parce JW, Dechatelet LR, Szejda P, Seeds MC, Thomas M. Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol 1983;130:1910–1917.
  • Andoh Y, Mizutani A, Ohashi T, Kojo S, Ishii T, Adachi Y, Ikehara S, Taketani S. The antioxidant role of a reagent, 2′,7′-dichlorodihydrofluorescin diacetate, detecting reactive-oxygen species and blocking the induction of heme oxygenase-1 and preventing cytotoxicity. J Biochem 2006; 140:483–489.
  • Zhu H, Bannenberg GL, Moldeus P, Shertzer HG. Oxidation pathways for the intracellular probe 2′,7′-dichlorofluorescein. Arch Toxicol 1994;68:582–587.
  • Rosenkranz AR, Schmaldienst S, Stuhlmeier KM, Chen W, Knapp W, Zlabinger GJ. A microplate assay for the detection of oxidative products using 2′,7′-dichlorofluorescin -diacetate. J Immunol Methods 1992;156:39–45.
  • Rota C, Chignell CF, Mason RP. Evidence for free radical formation during the oxidation of 2′-7′-dichlorofluorescin to the fluorescent dye 2′-7′-dichlorofluorescein by horseradish peroxidase: possible implications for oxidative stress measurements. Free Radic Biol Med 1999;27:873–881.
  • Rota C, Fann YC, Mason RP. Phenoxyl free radical formation during the oxidation of the fluorescent dye 2′,7′-dichlorofluorescein by horseradish peroxidase. Possible consequences for oxidative stress measurements. J Biol Chem 1999;274:28161–28168.
  • LeBel CP, Ischiropoulos H, Bondy SC. Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 1992;5:227–231.
  • Oyama Y, Hayashi A, Ueha T, Maekawa K. Characterization of 2′,7′-dichlorofluorescin fluorescence in dissociated mammalian brain neurons: estimation on intracellular content of hydrogen peroxide. Brain Res 1994;635:113–117.
  • Scott JA, Homcy CJ, Khaw BA, Rabito CA. Quantitation of intracellular oxidation in a renal epithelial cell line. Free Radic Biol Med 1988;4:79–83.
  • Cai X, Pan N, Zou G. Copper-1,10-phenanthroline-induced apoptosis in liver carcinoma Bel-7402 cells associates with copper overload, reactive oxygen species production, glutathione depletion and oxidative DNA damage. Biometals 2007;20:1–11.
  • Swift LM, Sarvazyan N. Localization of dichlorofluorescin in cardiac myocytes: implications for assessment of oxidative stress. Am J Physiol Heart Circ Physiol 2000;278: H982–H990.
  • Keston AS, Brandt R. The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal Biochem 1965;11:1–5.
  • Moffat BD, Snell TW. Rapid toxicity assessment using an in vivo enzyme test for Brachionus plicatilis (Rotifera). Ecotoxicol Environ Saf 1995;30:47–53.
  • Guilbault GG, Kramer DN. Fluorometric determination of lipase, acylase, alpha-, and gamma-chymotrypsin and inhibitors of these enzymes. Anal Chem 1964;36:409–412.
  • Rotman B, Papermaster BW. Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. Proc Natl Acad Sci USA 1966;55:134–141.
  • Jakubowski W, Bartosz G. 2,7-dichlorofluorescin oxidation and reactive oxygen species: what does it measure? Cell Biol Int 2000;24:757–760.
  • Black MJ, Brandt RB. Spectrofluorometric analysis of hydrogen peroxide. Anal Biochem 1974;58:246–254.
  • Matsugo S, Sasai M, Shinmori H, Yasui F, Takeuchi M, Takeuchi T. Generation of a novel fluorescent product, monochlorofluorescein from dichlorofluorescin by photo-irradiationdagger. Free Radic Res 2006;40:959–965.
  • Bonini MG, Rota C, Tomasi A, Mason RP. The oxidation of 2′,7′-dichlorofluorescin to reactive oxygen species: a self-fulfilling prophesy? Free Radic Biol Med 2006;40:968–975.
  • Kim YM, Lim JM, Kim BC, Han S. Cu,Zn-superoxide dismutase is an intracellular catalyst for the H(2)O(2)-dependent oxidation of dichlorodihydrofluorescein. Mol Cells 2006;21:161–165.
  • Oyama Y, Hayashi A, Ueha T. Ca(2+)-induced increase in oxidative metabolism of dissociated mammalian brain neurons: effect of extract of ginkgo biloba leaves. Jpn J Pharmacol 1993;61:367–370.
  • Myhre O, Andersen JM, Aarnes H, Fonnum F. Evaluation of the probes 2′,7′-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmacol 2003;65:1575–1582.
  • Aam BB, Myhre O, Fonnum F. Transcellular signalling pathways and TNF-alpha release involved in formation of reactive oxygen species in rat alveolar macrophages exposed to tert-butylcyclohexane. Arch Toxicol 2003;77:678–684.
  • Hong JE, Santucci LA, Tian X, Silverman DJ. Superoxide dismutase-dependent, catalase-sensitive peroxides in human endothelial cells infected by Rickettsia rickettsii. Infect Immun 1998;66:1293–1298.
  • Mankhetkorn S, Abedinzadeh Z, Houee-Levin C. Antioxidant action of sodium diethyldithiocarbamate: reaction with hydrogen peroxide and superoxide radical. Free Radic Biol Med 1994;17:517–527.
  • De Grey AD. HO2: the forgotten radical. DNA Cell Biol 2002;21:251–257.
  • Vowells SJ, Sekhsaria S, Malech HL, Shalit M, Fleisher TA. Flow cytometric analysis of the granulocyte respiratory burst: a comparison study of fluorescent probes. J Immunol Methods 1995;178:89–97.
  • Duranteau J, Chandel NS, Kulisz A, Shao Z, Schumacker PT. Intracellular signaling by reactive oxygen species during hypoxia in cardiomyocytes. J Biol Chem 1998;273:11619–11624.
  • Frenkel K, Gleichauf C. Hydrogen peroxide formation by cells treated with a tumor promoter. Free Radic Res Commun 1991;12–13:783–794.
  • Brubacher JL, Bols NC. Chemically de-acetylated 2′,7′-dichlorodihydrofluorescein diacetate as a probe of respiratory burst activity in mononuclear phagocytes. J Immunol Methods 2001;251:81–91.
  • Leeder RG, Rafeiro E, Brien JF, Mandin CC, Massey TE. Evaluation of reactive oxygen species involvement in amiodarone pulmonary toxicity in vivo and in vitro. J Biochem Toxicol 1996;11:147–160.
  • Brzyska M, Bacia A, Elbaum D. Oxidative and hydrolytic properties of beta-amyloid. Eur J Biochem 2001;268: 3443–3454.
  • Chen XP, Du GH. High-throughput screening for reactive oxygen species scavengers targeting mitochondria. Methods Find Exp Clin Pharmacol 2008;30:255–260.
  • Holm P, Kankaanranta H, Metsä-Ketelä T, Moilanen E. Radical releasing properties of nitric oxide donors GEA 3162, SIN-1 and S-nitroso-N-acetylpenicillamine. Eur J Pharmacol 1998;346:97–102.
  • Gunasekar PG, Kanthasamy AG, Borowitz JL, Isom GE. Monitoring intracellular nitric oxide formation by dichlorofluorescin in neuronal cells. J Neurosci Methods 1995;61:15–21.
  • Tada Y, Mori T, Shinogi T, Yao N, Takahashi S, Betsuyaku S, Sakamoto M, Park P, Nakayashiki H, Tosa Y, Mayama S. Nitric oxide and reactive oxygen species do not elicit hypersensitive cell death but induce apoptosis in the adjacent cells during the defense response of oat. Mol Plant Microbe Interact 2004:245–253.
  • Lakshmi VM, Zenser TV. 2-(4-Carboxyphenyl)-4,4,5, 5-tetramethylimidazoline-1-oxyl -3-oxide potentiates nitrosation of a heterocyclic amine carcinogen by nitric oxide. Life Sci 2007;80:644–649.
  • Soler M, Camacho M, Molins-Pujol AM, Vila L. Effect of an imidazolineoxyl nitric oxide on prostaglandin synthesis in experimental shock: possible role of nitrogen dioxide in prostacyclin synthase inactivation. J Infect Dis 2001;183: 105–112.
  • Kurose I, Miura S, Fukumura D, Yonei Y, Saito H, Tada S, Suematsu M, Tsuchiya M. Nitric oxide mediates Kupffer cell-induced reduction of mitochondrial energization in hepatoma cells: a comparison with oxidative burst. Cancer Res 1993;53:2676–2682.
  • Gunasekar PG, Kanthasamy AG, Borowitz JL. NMDA receptor activation produces concurrent generation of nitric oxide and reactive oxygen species: implications for cell death. J Neurochem. 1995: 2016–2021.
  • Yan SK, Chang T, Wang H, Wu L, Wang R, Meng QH. Effects of hydrogen sulfide on homocysteine-induced oxidative stress in vascular smooth muscle cells. Biochem Biophys Res Commun 2006;351:485–491.
  • Hansen-Hagge TE, Baumeister E, Bauer T, Schmiedeke D, Renn T, Wanner C, Galle J. Transmission of oxLDL-derived lipid peroxide radicals into membranes of vascular cells is the main inducer of oxLDL-mediated oxidative stress. Atherosclerosis 2008;197:602–611.
  • Cathcart R, Schwiers E, Ames BN. Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal Biochem 1983;134:111–116.
  • Batandier C, Fontaine E, Keriel C, Leverve XM. Determination of mitochondrial reactive oxygen species: methodological aspects. J Cell Mol Med 2002;6:175–187.
  • Subramaniam R, Fan XJ, Scivittaro V, Yang J, Ha CE, Petersen CE, Surewicz WK, Bhagavan NV, Weiss MF, Monnier VM. Cellular oxidant stress and advanced glycation endproducts of albumin: caveats of the dichlorofluorescein assay. Arch Biochem Biophys 2002;400:15–25.
  • Shen HM, Shi CY, Shen Y, Ong CN. Detection of elevated reactive oxygen species level in cultured rat hepatocytes treated with aflatoxin B1. Free Radic Biol Med 1996;21:139–146.
  • Buxton GV, Greenstock CL, Helman WP. Critical review of rate constants for the reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O-) in aqueous solution. J Phys Chem Ref Data 1988;17:513–886.
  • Wrona M, Patel K, Wardman P. Reactivity of 2′,7′-dichlorodihydrofluorescein and dihydrorhodamine 123 and their oxidized forms toward carbonate, nitrogen dioxide, and hydroxyl radicals. Free Radic Biol Med 2005;38:262–270.
  • Kane DJ, Sarafian TA, Anton R, Hahn H, Gralla EB, Valentine JS, Ord T, Bredesen DE. Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science 1993;262:1274–1277.
  • Burkitt MJ, Wardman P. Cytochrome C is a potent catalyst of dichlorofluorescin oxidation: implications for the role of reactive oxygen species in apoptosis. Biochem Biophys Res Commun 2001;282:329–333.
  • Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 1997;275:1129–1132.
  • Ramos AM, Aller P. Quercetin decreases intracellular GSH content and potentiates the apoptotic action of the antileukemic drug arsenic trioxide in human leukemia cell lines. Biochem Pharmacol 2008;75:1912–1923.
  • Armstrong JS, Steinauer KK, Hornung B, Irish JM, Lecane P, Birrell GW, Peehl DM, Knox SJ. Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line. Cell Death Differ 2002 ;9:252–263.
  • Ohashi T, Mizutani A, Murakami A, Kojo S, Ishii T, Taketani S. Rapid oxidation of dichlorodihydrofluorescin with heme and hemoproteins: formation of the fluorescein is independent of the generation of reactive oxygen species. FEBS Lett 2002;511:21–27.
  • O'Malley YQ, Reszka KJ, Britigan BE. Direct oxidation of 2′,7′-dichlorodihydrofluorescein by pyocyanin and other redox-active compounds independent of reactive oxygen species production. Free Radic Biol Med 2004;36:90–100.
  • Fletcher MP, Halpern GM. Effects of low concentrations of arachidonic acid derived mediators on the membrane potential and respiratory burst responses of human neutrophils as assessed by flow cytometry. Fundam Clin Pharmacol 1990;4:65–77.
  • Kobzik L, Godleski JJ, Brain JD. Oxidative metabolism in the alveolar macrophage: analysis by flow cytometry. J Leukoc Biol 1990;47:295–303.
  • Rothe G, Valet G. Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2′,7′-dichlorofluorescin. J Leukoc Biol 1990;47:440–448.
  • Salgar SK, Paape MJ, Alston-Mills B, Miller RH. Flow cytometric study of oxidative burst activity in bovine neutrophils. Am J Vet Res 1991;52:1201–1207.
  • Wan CP, Myung E, Lau BH. An automated micro-fluorometric assay for monitoring oxidative burst activity of phagocytes. J Immunol Methods 1993;159:131–138.
  • Tell L, Kabbur MB, Smith WL, Gage L, Cullor JS. Oxygen radical production by Asian elephant (Elephas maximus) heterophils and Holstein cattle (Bos taurus) neutrophils. J Zoo Wildl Med 1999;30:402–407.
  • Bugge DM, Hegaret H, Wikfors GH, Allam B. Oxidative burst in hard clam (Mercenaria mercenaria) haemocytes. Fish Shellfish Immunol 2007;23:188–196.
  • Walrand S, Valeix S, Rodriguez C, Ligot P, Chassagne J, Vasson MP. Flow cytometry study of polymorphonuclear neutrophil oxidative burst: a comparison of three fluorescent probes. Clin Chim Acta 2003;331:103–110.
  • Swann JD, Acosta D. Failure of gentamicin to elevate cellular malondialdehyde content or increase generation of intracellular reactive oxygen species in primary cultures of renal cortical epithelial cells. Biochem Pharmacol 1990;40: 1523–1526.
  • Degli Esposti M. Assessing functional integrity of mitochondria in vitro and in vivo. Methods Cell Biol 2001; 65:75–96.
  • Kochli H, Von Wartburg JP. A sensitive photometric assay for monoamine oxidase. Anal Biochem 1978;84:127–135.
  • Tobi SE, Paul N, McMillan TJ. Glutathione modulates the level of free radicals produced in UVA-irradiated cells. J Photochem Photobiol B Biol 2000;57:102–112.
  • Daghastanli NA, Itri R, Baptista MS. Singlet oxygen reacts with 2′,7′-dichlorodihydrofluorescein and contributes to the formation of 2′,7′-dichlorofluorescein. Photochem Photobiol 2008;84:1238–1243.
  • Rao KM, Padmanabhan J, Kilby DL, Cohen HJ, Currie MS, Weinberg JB. Flow cytometric analysis of nitric oxide production in human neutrophils using dichlorofluorescein diacetate in the presence of a calmodulin inhibitor. J Leukoc Biol 1992;51:496–500.
  • Gabriel C, Camins A, Sureda FX, Aquirre L, Escubedo E, Pallàs M, Camarasa J. Determination of nitric oxide generation in mammalian neurons using dichlorofluorescin diacetate and flow cytometry. J Pharmacol Toxicol Methods 1997;38:93–98.
  • Imrich A, Kobzik L. Fluorescence-based measurement of nitric oxide synthase activity in activated rat macrophages using dichlorofluorescin. Nitric Oxide 1997;1:359–369.
  • Crow JP. Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide 1997;1:145–157.
  • Radi R, Peluffo G, Alvarez MN, Naviliat M, Cayota A. Unraveling peroxynitrite formation in biological systems. Free Radic Biol Med 2001;30:463–488.
  • Kooy NW, Royall JA, Ischiropoulos H, Beckman JS. Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic Biol Med 1994;16:149–156.
  • Kooy NW, Royall JA, Ischiropoulos H. Oxidation of 2′,7′-dichlorofluorescin by peroxynitrite. Free Radic Res 1997;27:245–254.
  • Glebska J, Koppenol WH. Peroxynitrite-mediated oxidation of dichlorodihydrofluorescein and dihydrorhodamine. Free Radic Biol Med 2003;35:676–682.
  • Sun ZN, Liu FQ, Chen Y, Tam PK, Yang D. A highly specific BODIPY-based fluorescent probe for the detection of hypochlorous acid. Org Lett 2008;10:2171–2174.
  • Yang D, Wang HL, Sun ZN, Chung NW, Shen JG. A highly selective fluorescent probe for the detection and imaging of peroxynitrite in living cells. J Am Chem Soc 2006;128: 6004–6005.
  • Sun ZN, Wang HL, Liu FQ, Chen Y, Tam PK, Yang D. BODIPY-based fluorescent probe for peroxynitrite detection and imaging in living cells. Org Lett 2009;11:1887–1890.
  • Kato T, Hiraga Y, Takahashi Y, Kinoshita T. Determination of serum uric acid and glucose using dichlorofluorescin-cycloheptaamylose complex. Chem Pharm Bull (Tokyo) 1979;27:3073–3077.
  • Suzuki O, Oya M, Katsumata Y, Matsumoto T, Yada S. A new enzymatic method for the demonstration of spermine in human seminal stains. J Forens Sci 1980;25:99–102.
  • Cathcart R, Schwiers E, Ames BN. Detection of picomole levels of lipid hydroperoxides using a dichlorofluorescein fluorescent assay. Methods Enzymol 1984;105:352–358.
  • Nishimura S, Akagi M, Yoshida K, Hayakawa S, Sawamura T, Munakata H, Hamanishi C. Oxidized low-density lipoprotein (ox-LDL) binding to lectin-like ox-LDL receptor-1 (LOX-1) in cultured bovine articular chondrocytes increases production of intracellular reactive oxygen species (ROS) resulting in the activation of NF-kappaB. Osteoarthr Cartil 2004;12:568–576.
  • Sauer H, Gunther J, Hescheler J, Wartenberg M. Thalidomide inhibits angiogenesis in embryoid bodies by the generation of hydroxyl radicals. Am J Pathol 2000;156: 151–158.
  • Sheng G, Pu X, Lei L, Tu P, Li C. Tubuloside B from Cistanche salsa rescues the PC12 neuronal cells from 1-methyl-4-phenylpyridinium ion-induced apoptosis and oxidative stress. Planta Med 2002;68:966–970.
  • LeBel CP, Bondy SC. Sensitive and rapid quantitation of oxygen reactive species formation in rat synaptosomes. Neurochem Int 1990;17:435–440.
  • Robinson JP, Bruner LH, Bassoe CF, Hudson JL, Ward PA, Phan SH. Measurement of intracellular fluorescence of human monocytes relative to oxidative metabolism. J Leukoc Biol 1988;43:304–310.
  • Sadzuka Y, Nakagawa K, Yoshioka H, Sonobe T. A liposomal formulation study of 2,7-dichlorodihydrofluorescein for detection of reactive oxygen species. Int J Pharm 2008; 356:300–305.
  • Aldini G, Yeum KJ, Russell RM, Krinsky NI. A method to measure the oxidizability of both the aqueous and lipid compartments of plasma. Free Radic Biol Med 2001;31: 1043–1050.
  • Bromme HJ, Zuhlke L, Silber RE, Simm A. DCFH2 interactions with hydroxyl radicals and other oxidants-influence of organic solvents. Exp Gerontol 2008;43: 638–644.
  • Hempel SL, Buettner GR, O'Malley YQ, Wessels DA, Flaherty DM. Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2′,7′-dichlorodihydrofluorescein diacetate, 5 (and 6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic Biol Med 1999;27:146–159.
  • van Reyk DM, King NJ, Dinauer MC, Hunt NH. The intracellular oxidation of 2′,7′-dichlorofluorescin in murine T lymphocytes. Free Radic Biol Med 2001;30: 82–88.
  • Rabesandratana H, Fournier AM, Chateau MT, Serre A, Dornand J. Increased oxidative metabolism in PMA-activated lymphocytes: a flow cytometric study. Int J Immunopharmacol 1992;14:895–902.
  • Takeuchi T, Nakajima M, Morimoto K. Relationship between the intracellular reactive oxygen species and the induction of oxidative DNA damage in human neutrophil-like cells. Carcinogenesis 1996;17:1543–1548.
  • Yan Y, Wei CL, Zhang WR, Cheng HP, Liu J. Cross-talk between calcium and reactive oxygen species signaling. Acta Pharmacol Sin 2006;27:821–826.
  • Amoroso S, Gioielli A, Cataldi M, Di Renzo G, Annunziato L. In the neuronal cell line SH-SY5Y, oxidative stress-induced free radical overproduction causes cell death without any participation of intracellular Ca(2+) increase. Biochim Biophys Acta 1999;1452:151–160.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.