112
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Oxidative damage induced by herbicides is mediated by thiol oxidation and hydroperoxides production

, , , , , , & show all
Pages 891-906 | Received 21 Jan 2010, Published online: 09 Jun 2010

References

  • Braconi D, Sotgiu M, Millucci L, Paffetti A, Tasso F, Alisi C, Martini S, Rappuoli R, Lusini P, Sprocati AR, Rossi C, Santucci A. Comparative analysis of the effects of locally used herbicides and their active ingredients on a wild-type wine Saccharomyces cerevisiae strain. J Agric Food Chem 2006;54: 3163–3172.
  • Braconi D, Sotgiu M, Bernardini G, Paffetti A, Tasso F, Alisi C, Martini S, Rappuoli R, Sprocati AR, Rossi C, Santucci A. Wild-type wine Saccharomyces cerevisiae as a tool to evaluate the effects on eukaryotic life of locally used herbicides. International Journal of Ecodynamics 2006;1:266–283.
  • Braconi D, Possenti S, Laschi M, Geminiani M, Lusini P, Bernardini G, Santucci A. Oxidative damage mediated by herbicides on yeast cells. J Agric Food Chem 2008;56: 3836–3845.
  • Braconi D, Bernardini G, Possenti S, Laschi M, Arena S, Scaloni A, Geminiani M, Sotgiu M, Santucci A. Proteomics and redox-proteomics of the effects of herbicides on a wild-type wine Saccharomyces cerevisiae strain. J Proteome Res 2009;8:256–267.
  • Jones DP. Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 2008;295:849–868.
  • Trabalzini L, Paffetti A, Scaloni A, Talamo F, Ferro E, Coratza G, Bovalini L, Lusini P, Martelli P, Santucci A. Proteomic response to physiological fermentation stresses in a wild-type wine strain of Saccharomyces cerevisiae. Biochem J 2003;370: 35–46.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72: 248–254.
  • Do TQ, Schultz JR, Clarke CF. Enhanced sensitivity of ubiquinone-deficient mutants of Saccharomyces cerevisiae to products of autoxidized polyunsaturated fatty acids. Proc Natl Acad Sci USA 1996;93:7534–7539.
  • Witko-Sarsat V, Friedlander M, Capeillère-Blandin C, Nguyen-Khoa T, Nguyen AT, Zingraff J, Jungers P, Descamps-Latscha B. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int 1996;49: 1304–1313.
  • Buonocore G, Perrone S, Longini M, Terzuoli L, Bracci R. Total hydroperoxide and advanced oxidation protein products in preterm hypoxic babies. Pediatr Res 2000;47:221–224.
  • Beutler E. Red cell metabolism: A manual of biochemical methods. 3rd, New York: Grune and Stratton; 1984. 131–134.
  • Griffith OW. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 1980;106:207–212.
  • Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 1969;27:502–522.
  • Carlberg I, Mannervik B. Glutathione reductase. Methods Enzymol 1985;113:484–490.
  • Kim JR, Yoon HW, Kwon KS, Lee SR, Rhee SG. Identification of proteins containing cysteine residues that are sensitive to oxidation by hydrogen peroxide at neutral pH. Anal Biochem 2000;283:214–221.
  • Ren Q, Yang H, Gao B, Zhang Z. Global transcriptional analysis of yeast cell death induced by mutation of sister chromatid cohesin. Comp Funct Genomics 2008;634283.
  • Soltaninejad K, Abdollahi M. Current opinion on the science of organophosphate pesticides and toxic stress: a systematic review. Med Sci Monit 2009;15:RA75–RA90.
  • Muniz JF, McCauley L, Scherer J, Lasarev M, Koshy M, Kow YW, Nazar-Stewart V, Kisby GE. Biomarkers of oxidative stress and DNA damage in agricultural workers: a pilot study. Toxicol Appl Pharmacol 2008;227:97–107.
  • Jia Z, Misra HP. Reactive oxygen species in in vitro pesticide-induced neuronal cell (SH-SY5Y) cytotoxicity: role of NFkappaB and caspase-3. Free Radic Biol Med 2007;42:288–298.
  • Fufezan C, Rutherford AW, Krieger-Liszkay A. Singlet oxygen production in herbicide-treated photosystem II. FEBS Lett 2002;532:407–410.
  • Rutherford AW, Krieger-Liszkay A. Herbicide-induced oxidative stress in photosystem II. Trends Biochem Sci 2001;26: 648–653.
  • Burrows HD, Canle LM, Santaballa JA, Steenken S. Reaction pathways and mechanisms of photodegradation of pesticides. J Photochem Photobiol B 2002;67:71–108.
  • Gehin A, Guyon C, Nicod L. Glyphosate-induced antioxidant imbalance in HaCaT: The protective effect of Vitamins C and E. Environ Toxicol Pharmacol 2006;22:27–34.
  • Hultberg M. Cysteine turnover in human cell lines is influenced by glyphosate. Environ Toxicol Pharmacol 2007;24: 19–22.
  • Oakes DJ, Pollak JK. The in vitro evaluation of the toxicities of three related herbicide formulations containing ester derivatives of 2,4,5-T and 2,4-D using sub-mitochondrial particles. Toxicology 2000;151:1–9.
  • Kedziora-Kornatowska KZ, Luciak M, Paszkowski J. Lipid peroxidation and activities of antioxidant enzymes in the diabetic kidney: effect of treatment with angiotensin convertase inhibitors. IUBMB Life 2000;49:303–307.
  • Requena JR, Fu MX, Ahmed MU, Jenkins AJ, Lyons TJ, Thorpe SR. Lipoxidation products as biomarkers of oxidative damage to proteins during lipid peroxidation reactions. Nephrol Dial Transplant 1996;11(Suppl 5):48–53.
  • Kehrer JP. Free radicals as mediators of tissue injury and disease. Crit Rev Toxicol 1993;23:21–48.
  • Kavitha P, Venkateswara Rao J. Oxidative stress and locomotor behaviour response as biomarkers for assessing recovery status of mosquito fish, Gambusia affinis after lethal effect of an organophosphate pesticide, monocrotophos. Pestic Biochem Physiol 2007;87:182–188.
  • Ahsan N, Lee DG, Lee KW, Alam I, Lee SH, Bahk JD, Lee BH. Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach. Plant Physiol Biochem 2008;46:1062–1070.
  • Beuret CJ, Zirulnik F, Giménez MS. Effect of the herbicide glyphosate on liver lipoperoxidation in pregnant rats and their fetuses. Reprod Toxicol 2005;19:501–504.
  • Pieniążek D, Bukowska B, Duda W. Comparison of the effect of Roundup Ultra 360 SL pesticide and its active compound glyphosate on human erythrocytes. Pestic Biochem Physiol 2004;79: 58–63.
  • Costa MJ, Monteiro DA, Oliveira-Neto AL, Rantin FT, Kalinin AL. Oxidative stress biomarkers and heart function in bullfrog tadpoles exposed to Roundup Original. Ecotoxicology 2008;17:153–163.
  • Halliwell B, Gutteridge JM. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 1984;219:1–14.
  • Alderman CJ, Shah S, Foreman JC, Chain BM, Katz DR. The role of advanced oxidation protein products in regulationof dendritic cell function. Free Radic Biol Med 2002;32:377–385.
  • Capeillère-Blandin C, Gausson V, Descamps-Latscha B, Witko-Sarsat V. Biochemical and spectrophotometric significance of advanced oxidized protein products. Biochim Biophys Acta 2004;1689:91–102.
  • Lee JC, Straffon MJ, Jang TY, Higgins VJ, Grant CM, Dawes IW. The essential and ancillary role of glutathione in Saccharomyces cerevisiae analysed using a grande gsh1 disruptant strain. FEMS Yeast Res 2001;1:57–65.
  • Grant CM, Perrone G, Dawes IW. Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 1998;253:893–898.
  • Sugiyama K, Kawamura A, Izawa S, Inoue Y. Role of glutathione in heat-shock-induced cell death of Saccharomyces cerevisiae. Biochem J 2000;352:71–78.
  • Elskens MT, Jaspers CJ, Penninckx MJ. Glutathione as an endogenous sulphur source in the yeast Saccharomyces cerevisiae. J Gen Microbiol 1991;137:637–644.
  • Mehdi K, Penninckx MJ. An important role for glutathione and gamma-glutamyltranspeptidase in the supply of growth requirements during nitrogen starvation of the yeast Saccharomyces cerevisiae. Microbiology 1997;143:1885–1889.
  • Izawa S, Inoue Y, Kimura A. Oxidative stress response in yeast: effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae. FEBS Lett 1995;368:73–76.
  • Stephen DW, Jamieson DJ. Glutathione is an important antioxidant molecule in the yeast Saccharomyces cerevisiae. FEMS Microbiol Lett 1996;141:207–212.
  • Gibson BR, Lawrence SJ, Boulton CA, Box WG, Graham NS, Linforth RS, Smart KA. The oxidative stress response of a lager brewing yeast strain during industrial propagation and fermentation. FEMS Yeast Res 2008;8:574–585.
  • Bukowska B. 2,4,5-T and 2,4,5-TCP induce oxidative damage in human erythrocytes: the role of glutathione. Cell Biol Int 2004;28:557–563.
  • Sheehan D. Detection of redox-based modification in two-dimensional electrophoresis proteomic separations. Biochem Biophys Res Commun 2006;349:455–462.
  • Drakulic T, Temple MD, Guido R, Jarolim S, Breitenbach M, Attfield PV, Dawes IW. Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. FEMS Yeast Res 2005;5:1215–1228.
  • Ghezzi P, Bonetto V. Redox proteomics: identification of oxidatively modified proteins. Proteomics 2003;3:1145–1153.
  • Bukowska B. Effects of 2,4-D and its metabolite 2,4-dichlorophenol on antioxidant enzymes and level of glutathione in human erythrocytes. Comp Biochem Physiol C Toxicol Pharmacol 2003;135:435–441.
  • Halliwell B. Superoxide dismutase, catalase and glutathione peroxidase: solutions to the problems of living with oxygen. New Phytologist 1974;73:1075–1086.
  • Inoue Y, Matsuda T, Sugiyama K, Izawa S, Kimura A. Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. J Biol Chem 1999;274: 27002–27009.
  • Jamieson DJ. Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 1998;14:1511–1527.
  • Takizawa M, Komori K, Tampo Y, Yonaha M. Paraquat-induced oxidative stress and dysfunction of cellular redox systems including antioxidative defense enzymes glutathione peroxidase and thioredoxin reductase. Toxicol In Vitro 2007;21:355–363.
  • Bus JS, Gibson JE. Paraquat: model for oxidant-initiated toxicity. Environ Health Perspect 1984;55:37–46.
  • Winterbourn CC, Hampton MB. Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 2008;45: 549–561.
  • Davies MJ. The oxidative environment and protein damage. Biochim Biophys Acta 2005;1703:93–109.
  • Shenton D, Perrone G, Quinn KA, Dawes IW, Grant CM. Regulation of protein S-thiolation by glutaredoxin 5 in the yeast Saccharomyces cerevisiae. J Biol Chem 2002;277: 16853–16859.
  • Biswas S, Chida AS, Rahman I. Redox modifications of protein-thiols: emerging roles in cell signaling. Biochem Pharmacol 2006;71:551–564.
  • Landar A, Oh JY, Giles NM, Isom A, Kirk M, Barnes S, Darley-Usmar VM. A sensitive method for the quantitative measurement of protein thiol modification in response to oxidative stress. Free Radic Biol Med 2006;40:459–468.
  • Cooper CE, Patel RP, Brookes PS, Darley-Usmar VM. Nanotransducers in cellular redox signaling: modification of thiols by reactive oxygen and nitrogen species. Trends Biochem Sci 2002;27:489–492.
  • Giles NM, Watts AB, Giles GI, Fry FH, Littlechild JA, Jacob C. Metal and redox modulation of cysteine protein function. Chem Biol 2003;10:677–693.
  • Giles NM, Giles GI, Jacob C. Multiple roles of cysteine in biocatalysis. Biochem Biophys Res Commun 2003;300:1–4.
  • Hogg N. The biochemistry and physiology of S-nitrosothiols. Annu Rev Pharmacol Toxicol 2002;42:585–600.
  • Ghezzi P, Bonetto V, Fratelli M. Thiol-disulfide balance: from the concept of oxidative stress to that of redox regulation. Antioxid Redox Signal 2005;7:964–972.
  • Jacob C, Knight I, Winyard PG. Aspects of the biological redox chemistry of cysteine: from simple redox responses to sophisticated signalling pathways. Biol Chem 2006;387: 1385–1397.
  • Toledano MB, Delaunay A, Monceau L, Tacnet F. Microbial H2O2 sensors as archetypical redox signaling modules. Trends Biochem Sci 2004;29:351–357.
  • Le Moan N, Clement G, Le Maout S, Tacnet F, Toledano MB. The Saccharomyces cerevisiae proteome of oxidized protein thiols: contrasted functions for the thioredoxin and glutathione pathways. J Biol Chem 2006;281:10420–10430.
  • Magherini F, Carpentieri A, Amoresano A, Gamberi T, De Filippo C, Rizzetto L, Biagini M, Pucci P, Modesti A. Different carbon sources affect lifespan and protein redox state during Saccharomyces cerevisiae chronological ageing. Cell Mol Life Sci 2009;66:933–947.
  • McDonagh B, Ogueta S, Lasarte G, Padilla CA, Bárcena JA. Shotgun redox proteomics identifies specifically modified cysteines in key metabolic enzymes under oxidative stress in Saccharomyces cerevisiae. J Proteomics 2009;72:677–689.
  • Hwang NR, Yim SH, Kim YM, Jeong J, Song EJ, Lee Y, Lee JH, Choi S, Lee KJ. Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions. Biochem J 2009;423:253–264.
  • Shanmuganathan A, Avery SV, Willetts SA, Houghton JE. Copper-induced oxidative stress in Saccharomyces cerevisiae targets enzymes of the glycolytic pathway. FEBS Lett 2004;556:253–259.
  • Fiorani M, De Sanctis R, Scarlatti F, Stocchi V. Substrates of hexokinase, glucose-6-phosphate dehydrogenase, and glyceraldehyde-3-phosphate dehydrogenase prevent the inhibitory response induced by ascorbic acid/iron and dehydroascorbic acid in rabbit erythrocytes. Arch Biochem Biophys 1998;356:159–166.
  • Fiorani M, De Sanctis R, Scarlatti F, Vallorani L, De Bellis R, Serafini G, Bianchi M, Stocchi V. Dehydroascorbic acid irreversibly inhibits hexokinase activity. Mol Cell Biochem 2000;209:145–153.
  • Brodie AE, Reed DJ. Cellular recovery of glyceraldehyde-3-phosphate dehydrogenase activity and thiol status after exposure to hydroperoxides. Arch Biochem Biophys 1990;276: 212–218.
  • Chung DM, Hough C, Senatorov VV. Glyceraldehyde-3 phosphate dehydrogenase, apoptosis, and neurodegenerative diseases. Annu Rev Pharmacol Toxicol 2005;45:269–290.
  • Ralser M, Wamelink MM, Kowald A, Gerisch B, Heeren G, Struys EA, Klipp E, Jakobs C, Breitenbach M, Lehrach H, Krobitsch S. Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 2007;6:10.
  • Lecoq K, Belloc I, Desgranges C, Daignan-Fornier B. Role of adenosine kinase in Saccharomyces cerevisiae: identification of the ADO1 gene and study of the mutant phenotypes. Yeast 2001;18:335–342.
  • Brejning J, Arneborg N, Jespersen L. Identification of genes and proteins induced during the lag and early exponential phase of lager brewing yeasts. J Appl Microbiol 2005;98:261–271.
  • Teixeira MC, Santos PM, Fernandes AR, Sá-Correia I. A proteome analysis of the yeast response to the herbicide 2,4-dichlorophenoxyacetic acid. Proteomics 2005;5:1889–1901.
  • Weeks ME, Sinclair J, Butt A, Chung YL, Worthington JL, Wilkinson CR, Griffiths J, Jones N, Waterfield MD, Timms JF. A parallel proteomic and metabolomic analysis of the hydrogen peroxide- and Sty1p-dependent stress response in Schizosaccharomyces pombe. Proteomics 2006;6: 2772–2796.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.