135
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Trypanosoma cruzi dihydrolipoamide dehydrogenase as target of reactive metabolites generated by cytochrome c/hydrogen peroxide (or linoleic acid hydroperoxide)/phenol systems

Pages 1345-1358 | Received 01 May 2010, Published online: 06 Sep 2010

References

  • OPS/HDM/CD/425-06. Estimación cuantitativa de la Enfermedad de Chagas en las Américas. Organización Panamericana de la Salud 2006:1–29.
  • Urbina JA, Docampo R. Specific chemotherapy of Chagas disease: controversies and advances. Trends Parasitol 2003;19: 495–501.
  • Kelder PP, De Mol NJ, Fischer MJE, Janssen LHM. Kinetic evaluation of phenothiazine derivatives by methemoglobin and horseradish peroxidase in the presence of hydrogen peroxide. Implications for the reaction mechanisms. Biochim Biophys Acta 1994;1205:230–238.
  • Gutiérrez-Correa J, Fairlamb AH, Stoppani AOM. Trypanosoma cruzi trypanothione reductase is inactivated by peroxidase-generated phenothiazine cationic radicals. Free Rad Res 2001;34:363–378.
  • Gutiérrez-Correa J, Stoppani AOM. Trypanosoma cruzi dihydrolipoamide dehydrogenase is inactivated by phenothiazines in the presence of cytochrome c and hydrogen peroxide. Effects of antioxidants. Parasitol Latinoam 2005;60:105–121.
  • Gutiérrez-Correa J, Krauth-Siegel RL, Stoppani AOM. Phenothiazine radicals inactivate Trypanosoma cruzi dihydrolipoamide dehydrogenase. Enzyme protection by radical scavengers. Free Rad Res 2003;37:281–291.
  • Gutiérrez-Correa J. Trypanosoma cruzi fihydrolipoamide fehydrogenase as target for phenothiazine cationic radicals. Effect of antioxidants. Curr Drug Targets 2006;7:1155–1179.
  • Williams CHJ. Lipoamide dehydrogenase, glutathione reductase, thioredoxin reductase and mercuric reductase. A family of flavoenzyme transhydrogenases. In chemistry and biochemistry of flavoenzymes. Boca Raton, FL: CRC Press; 1992. 121–211.
  • Beckman JS, Siedow JN. Bactericidal agents generated by the peroxidase-catalyzed oxidation by para-hydroquinones. J Biol Chem 1985;260:14604–14609.
  • Cai J, Yang J, Jones DP. Mitochondrial control of apoptosis: the role of cytochrome c. Biochim Biophys Acta 1998;1366: 139–149.
  • Korshunov SS, Krasnikov BF, Pereverzev MO, Skulachev VP. The antioxidant function of cytochrome c. FEBS Lett 1999; 462:192–198.
  • Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, Pelliccia G, Luzi L, Minucci S, Marcaccio M, Pinton P, Rizzuto R, Bernardi P, Paolucci F, Pelicci PG. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 2005;122:221–233.
  • Ritter CL, Malejka-Giganti D, Polnaszek CF. Cytochrome c/H2O2-mediated one electron oxidation of carcinogenic N- fluorenylacetohydroxamic acids to nitroxyl free radicals. Chem Biol Interact 1983;46:317–334.
  • Harel S, Kanner J. The generation of ferryl or hydroxyl radicals during interaction of haemproteins with hydrogen peroxide. Free Radic Res Commun 1988;5:21–33.
  • Radi R, Thomson L, Rubo H, Prodanov E. 1991. Cytochrome c-catalyzed oxidation of organic molecules by hydrogen peroxide. Arch Biochem Biophys 1991;288:112–117.
  • Lawrence A, Jones CM, Wardman P, Burkitt MJ. Evidence for the role of a peroxidase compound I-type intermediate in the oxidation of glutathione, NADH, ascorbate, and dichlorofluorescin by cytochrome c/H2O2. Implications for oxidative stress during apoptosis. J Biol Chem 2003;278: 29410–29419.
  • Kagan VE, Tyurin VA, Jian J, Tyurina Y, Ritov VB, Amoscato AA, Osipov AN, Belikova NA, Kapralov AA, Kini V, Vlasova II, Zhao Q, Zou M, Di P, Svistunenko DA, Kurnikov IV, Borisenko GG. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol 2005;1:223–232.
  • Dickerson RE, Timkovich R. In: Boyer P. The enzymes. 3rd ed. New York: Academic Press; 1975. 397–547.
  • Forman HJ, Azzi A. 1997. On the virtual existence of superoxide anion in mitochondria: thoughts regarding its role in pathophysiology. FASEB J 1997;11:374–375.
  • Chance B, Sies H, Boveris A. Hydroperoxide in mammalian organs. Physiol Rev 1979;59:527–605.
  • Radi R, Turrens JF, Freeman BA. Cytochrome c-catalyzed membrane lipid peroxidation by hydrogen peroxide. Arch Biochem Biophys 1991;288:118–125.
  • O’Brien PJ, Frazer AC. The effect of lipid peroxides on the biochemical constituents of the cell. Proc Nutr Soc 1966;25: 9–18.
  • Iwahashi H, Nishizaki K, Takagi I. Cytochrome c catalyses the formation of pentyl radical and octanoic acid radical from linoleic acid hydroperoxide. Biochem J 2002;341:57–66.
  • Krauth-Siegel RL, Schôneck R. Trypanothione reductase and lipoamide dehydrogenase as target for a structure-based drug design. FASEB J 1995;9:1138–1146.
  • Schöneck R, Billaut-Mulot O, Numrich P, Ouaissi MA, Krauth-Siegel RL. Cloning, sequencing and functional expression of dihyrolipoamide dehydrogenase from the human pathogen Trypanosoma cruzi. Eur J Biochem 1997; 243:739–747.
  • Desser RK, Himmelhoch SR, Evans WH, Januska M, Mage M, Shelton E. Guinea pig heterophil and eosinophil peroxidase. Arch Biochem Biophys 1972;148:452–465.
  • Egmond MR, Brunori M, Fasella PM. The steady-state kinetics of the oxygenation of linoleic acid catalised by soybean lipoxygenase. Eur J Biochem 1976;61:93–100.
  • Barr DP, Gunther MR, Deterding LJ, Tomer KB, Mason RP. ESR Spin-trapping of a protein-derived tyrosyl radical from the reaction of cytochrome c with hydrogen peroxide. J Biol Chem 1996;271:15498–15503.
  • Diederix REM, Ubbink M, Canters GW. Peroxidase activity as a tool for studying the folding of c-type cytochromes. Biochemistry 2002;41:13067–13077.
  • Tuominen EKJ, Wallace CJA, Kinnunen PK. Phospholipid-cytochrome c interaction. J Biol Chem 2002;277:8822–8826.
  • Shidoji Y, Hayashi K, Komura S, Ohishi N, Yagi K. Loss of molecular interaction between cytochrome c and cardiolipin due to lipid peroxidation. Biochem Biophys Res Commun 1999;264:343–347.
  • Balakrishnan G, Hu Y, Oyerinde O, Su J, Groves JT, Spiro TG. A conformational switch to β-sheet structure in cytochrome c leads to heme exposure. Implications for cardiolipin peroxidation and apoptosis. J Am Chem Soc 2007;129: 504–505.
  • Chen Y-R, Deterding LJ, Sturgeon BE, Tomer KB, Mason RP. Protein oxidation of cytochrome c by reactive halogen species enhances its Peroxidase activity. J Biol Chem 2002;277: 29781–29791.
  • Cassina AM, Hodara R, Souza JM, Thomson L, Castro L, Ischiropoulos H, Freeman BA, Radi R. Cytochrome c nitration by peroxynitrite. J Biol Chem 2000;275:21409–21415.
  • Abriata LA, Cassina A, Tórtora V, Marín M, Souza JM, Castro L, Vila AJ, Radi R. Nitration of solvent-exposed tyrosine 74 on cytochrome c triggers heme iron-methionine 80 bond disruption. Nuclear magnetic resonance and optical spectroscopy Studies. J Biol Chem 2009;284:17–26.
  • Deterding LJ, Barr DP, Mason RP, Tomer KB. Characterization of cytochrome c free radical reactions with peptides by mass spectrometry. J Biol Chem 1998;273:12863–12869.
  • Brash AR. Lipoxygenases: occurrence, functions, catalysis and acquisition of substrate. J Biol Chem 1999;274:23679–23682.
  • Potter DW, Miller DW, Hinson JA. Identification of acetaminophen polymerization products catalyzed by horseradish peroxidase. J Biol Chem 1985;271:12174–12180.
  • Potter DW, Hinson JA. Mechanisms of acetaminophen oxidation to N-Acetyl-p-benzoquinone imine by horseradish peroxidase and cytochrome P-450. J Biol Chem 1987;262: 966–973.
  • Ueda J-I, Tsuchiya Y, Ozawa T. Relationship between effects of phenolic compounds on the generation of free radicals from lactoperoxidase-catalyzed oxidation of NAD(P)H or GSH and their DPPH scavenging ability. Chem Pharm Bull 2001;49:299–304.
  • O’Brien PJ. Peroxidases. Chem Biol Interac 2000;129: 113–139.
  • Lee SST, Buters JTM, Pineau T, Fernandez-Salguer P, Gonzalez FJ. Role of CYP2E1 in the hepatotoxicity of acetaminophen. J Biol Chem 1996;271:12063–12067.
  • Harvison PJ, Guengerich PF, Rashed MS, Nelson SD. Cytochrome P-450 isozyme selectivity in the oxidation of acetaminophen. Chem Res Toxicol 1988;1:47–52.
  • Mirochnitchenko O, Weisbrot-Lefkowitz M, Reuhl K, Chen L, Yang Ch, Inouye M. Acetaminophen toxicity, opposite effects of two forms of glutathione peroxidase. J Biol Chem 1999;274:10349–10355.
  • Laranjinha J. Redox cycles of caffeic acid with α-Tocopherol and ascorbate. Methods Enzymol 1993;335:282–295.
  • Kemal C, Louis-Flamberg P, Krupinski-Olsen R, Shorter AL. Reductive inactivation of soybean lipoxygenase 1 by catechols: a possible mechanism for regulation of lipoxygenase activity. Biochemistry 1987;26:7064–7077.
  • Siraki AG, O’Brien PJ. Prooxidant activity of free radicals derived from phenol-containing neurotransmitters. Toxicology 2002;177:81–90.
  • Potter DW, Hinson JA. Reactions of N-acetyl-p-benzoquinone imine with reduced glutathione, acetaminophen and NADPH. Mol Pharmacol 1986;30:33–41.
  • Burcham PC, Harman AW. Acetaminophen toxicity results in site-specific mitochondrial damage in isolated mouse hepatocytes. J Biol Chem 1991;266:5049–5054.
  • Holme JA, Dahlin DC, Nelson SD, Dybing E. Cytotoxic effects of N-Acetyl-p-benzoquinone imine, a common arylating intermediate of paracetamol and N-hydroxyparacetamol. Biochem Pharmacol 1984;33:401–406.
  • Reid AB, Kurten RC, McCullough SS, Brock RW, Hinson JA. Mechanisms of acetaminophen-induced hepatotoxicity: role of oxidative stress and mitochondrial permeability transition in freshly isolated mouse hepatocytes. J Pharmacol Exp Ther 2005;312:509–516.
  • Halmes NC, Hinson JA, Martin BM, Pumford NR. Glutamate dehydrogenase covalently binds to a reactive metabolite of acetaminophen. Chem Res Toxicol 1996;9:541–546.
  • Moridani MY, Scobie H, Jamshidzadeh A, Salehi P, O’Brien PJ. Caffeic acid, chlorogenic acid, and dihydrocaffeic acid metabolism: glutathione conjugate formation. Drug Metab Dispos 2001;29:1432–1439.
  • Aver'ianovv AA. Generation of superoxide anion radicals and hydrogen peroxide in the auto-oxidation of caffeic acid. BioKhimia 1981;46:256–261.
  • O’Brien PJ. Radical formation during the peroxidase catalyzed metabolism of carcinogens and xenobiotics: the reactivity of these radicals with GSH, DNA, and unsaturated lipid. Free Radic Biol Med 1988;4:169–183.
  • Wardman P. . Reactions of thiyl radicals. Biothiols in health and diseasePacker L, Cadenas E, Biothiols in health and disease. New York: Marcel Dekker, Inc.; 1995. 1–18.
  • Karpinich NO, Tafani M, Rothman RJ, Russo MA, Farber JL. The course of etoposide-induced apotosis from damage to DNA and p53 activation to mitochondrial release of cytochrome c. J Biol Chem 2002;277:16547–16552.
  • Schwarcz de Tarlovsky MN, Affranchino JL, Stoppani AOM, Isola ELD, Lammel EM, González Cappa SM. Citocromos en diferentes estadios, cepas y poblaciones de Trypanosoma cruzi. Rev Arg Microbiol 1985;17:121–130.
  • Hill GC, Gutteridge WE, Mathhewsan NW. Purification and properties of cytochrome c from trypanosomatids. Biochim Biophys Acta 1971;243:225–229.
  • Kusel JP, Boveris A, Storey BT. H2O2 production and cytochrome c peroxidase activity in mitochondria isolated from trypanosomatid hemoflagellate Crithidia fasciculata. Arch Biochem Biophys 1973;158:799–805.
  • De Castro SL, Soeiro MNC, Meirelles MNI. Trypanosoma cruzi: effect of phenothiazines on the parasite and on its interaction with host cell. Mem Inst Oswaldo Cruz 1992;87: 209–215.
  • Rimoldi MT, Olabuenage SE, Elizalde de Bracco MM. Phagocytosis of Trypanosoma cruzi by human polymorphonuclear leukocytes. J Protozool 1981;28:351–354.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.