330
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Protective role of cytosolic NADP+-dependent isocitrate dehydrogenase, IDH1, in ischemic pre-conditioned kidney in mice

, , , &
Pages 759-766 | Received 21 Jan 2011, Accepted 26 Mar 2011, Published online: 21 Apr 2011

References

  • Chen W, Gabel S, Steenbergen C, Murphy E. A redox-based mechanism for cardioprotection induced by ischemic preconditioning in perfused rat heart. Circ Res 1995;77:424–429.
  • Soncul H, Oz E, Kalaycioglu S. Role of ischemic preconditioning on ischemia-reperfusion injury of the lung. Chest 1999;115:1672–1677.
  • Lee HT, Emala CW. Protective effects of renal ischemic preconditioning and adenosine pretreatment: role of A(1) and A(3) receptors. Am J Physiol Renal Physiol 2000;278:380–387.
  • Joo JD, Kim M, D'Agati VD, Lee HT. Ischemic preconditioning provides both acute and delayed protection against renal ischemia and reperfusion injury in mice. J Am Soc Nephrol 2006;17:3115–3123.
  • Stagliano NE, Perez-Pinzon MA, Moskowitz MA, Huang PL. Focal ischemic preconditioning induces rapid tolerance to middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 1999;19:757–761.
  • Sun XC, Li WB, Li QJ, Zhang M, Xian XH, Qi J, . Limb ischemic preconditioning induces brain ischemic tolerance via p38 MAPK. Brain Res 2006;1084:165–174.
  • Park KM, Chen A, Bonventre JV. Prevention of kidney ischemia/reperfusion-induced functional injury and JNK, p38, and MAPK kinase activation by remote ischemic pretreatment. J Biol Chem 2001;276:11870–11876.
  • Park KM, Byun JY, Kramers C, Kim JI, Huang PL, Bonventre JV. Inducible nitric-oxide synthase is an important contributor to prolonged protective effects of ischemic preconditioning in the mouse kidney. J Biol Chem 2003; 278:27256–27266.
  • Kim J, Kil IS, Seok YM, Yang ES, Kim DK, Lim DG, . Orchiectomy attenuates post-ischemic oxidative stress and ischemia/reperfusion injury in mice. A role for manganese superoxide dismutase. J Biol Chem 2006;281:20349–20356.
  • Dobashi K, Ghosh B, Orak JK, Singh I, Singh AK. Kidney ischemia-reperfusion: modulation of antioxidant defenses. Mol Cell Biochem 2000;205:1–11.
  • Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002;82:47–95.
  • Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. Faseb J 1996;10:709–720.
  • Nordberg J, Arner ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 2001;31:1287–1312.
  • Land W, Schneeberger H, Schleibner S, Illner WD, Abendroth D, Rutili G, . The beneficial effect of human recombinant superoxide dismutase on acute and chronic rejection events in recipients of cadaveric renal transplants. Transplantation 1994;57:211–217.
  • Lui SL, Chan LY, Zhang XH, Zhu W, Chan TM, Fung PC, Lai KN. Effect of mycophenolate mofetil on nitric oxide production and inducible nitric oxide synthase gene expression during renal ischaemia-reperfusion injury. Nephrol Dial Transplant 2001;16:1577–1582.
  • Garcia-Criado FJ, Eleno N, Santos-Benito F, Valdunciel JJ, Reverte M, Lozano-Sanchez FS, . Protective effect of exogenous nitric oxide on the renal function and inflammatory response in a model of ischemia-reperfusion. Transplantation 1998;66:982–990.
  • Veech RL, Eggleston LV, Krebs HA. The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver. Biochem J 1969;115:609–619.
  • Someya S, Yu W, Hallows WC, Xu J, Vann JM, Leeuwenburgh C, . Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 2010;143:802–812.
  • Beer SM, Taylor ER, Brown SE, Dahm CC, Costa NJ, Runswick MJ, Murphy MP. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE. J Biol Chem 2004;279:47939–47951.
  • Sztajer H, Gamain B, Aumann KD, Slomianny C, Becker K, Brigelius-Flohe R, Flohe L. The putative glutathione peroxidase gene of Plasmodium falciparum codes for a thioredoxin peroxidase. J Biol Chem 2001;276:7397–7403.
  • Thon M, Al-Abdallah Q, Hortschansky P, Brakhage AA. The thioredoxin system of the filamentous fungus Aspergillus nidulans: impact on development and oxidative stress response. J Biol Chem 2007;282:27259–27269.
  • Flamigni F, Marmiroli S, Caldarera CM, Guarnieri C. Involvement of thiol transferase- and thioredoxin-dependent systems in the protection of ‘essential’ thiol groups of ornithine decarboxylase. Biochem J 1989;259:111–115.
  • Koh HJ, Lee SM, Son BG, Lee SH, Ryoo ZY, Chang KT, . Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism. J Biol Chem 2004;279: 39968–39974.
  • Jennings GT, Stevenson PM. A study of the control of NADP(+)-dependent isocitrate dehydrogenase activity during gonadotropin-induced development of the rat ovary. Eur J Biochem 1991;198:621–625.
  • Frederiks WM, Kummerlin IP, Bosch KS, Vreeling-Sindelarova H, Jonker A, Van Noorden CJ. NADPH production by the pentose phosphate pathway in the zona fasciculata of rat adrenal gland. J Histochem Cytochem 2007;55:975–980.
  • Kloosterhof NK, Bralten LB, Dubbink HJ, French PJ, van den Bent MJ. Isocitrate dehydrogenase-1 mutations: a fundamentally new understanding of diffuse glioma? Lancet Oncol 2010;12:83–91.
  • Kim J, Kim KY, Jang HS, Yoshida T, Tsuchiya K, Nitta K, . Role of cytosolic NADP+-dependent isocitrate dehydrogenase in ischemia-reperfusion injury in mouse kidney. Am J Physiol Renal Physiol 2009;296:622–633.
  • Lee SM, Koh HJ, Park DC, Song BJ, Huh TL, Park JW. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med 2002;32:1185–1196.
  • Thadhani R, Pascual M, Bonventre JV. Acute renal failure. N Engl J Med 1996;334:1448–1460.
  • Thakar CV, Worley S, Arrigain S, Yared JP, Paganini EP. Improved survival in acute kidney injury after cardiac surgery. Am J Kidney Dis 2007;50:703–711.
  • Kim J, Kim JI, Kwon TH, Park KM. Kidney tubular cell regeneration starts in the deep cortex after ischemia. Korean J Nephrol 2008;27:536–544.
  • Seok YM, Kim J, Choi KC, Yoon CH, Boo YC, Park Y, Park KM. Wen-pi-tang-Hab-Wu-ling-san attenuates kidney ischemia/reperfusion injury in mice. A role for antioxidant enzymes and heat-shock proteins. J Ethnopharmacol 2007; 112:333–340.
  • Kim SY, Park JW. Cellular defense against singlet oxygen-induced oxidative damage by cytosolic NADP+-dependent isocitrate dehydrogenase. Free Radic Res 2003;37: 309–316.
  • Stanton RC, Seifter JL. Epidermal growth factor rapidly activates the hexose monophosphate shunt in kidney cells. Am J Physiol 1988;254:267–271.
  • Zerez CR, Lee SJ, Tanaka KR. Spectrophotometric determination of oxidized and reduced pyridine nucleotides in erythrocytes using a single extraction procedure. Anal Biochem 1987;164:367–373.
  • Akerboom TP, Sies H. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Meth Enzymol 1981;77:373–382.
  • Jain M, Cui L, Brenner DA, Wang B, Handy DE, Leopold JA, . Increased myocardial dysfunction after ischemia-reperfusion in mice lacking glucose-6-phosphate dehydrogenase. Circulation 2004;109:898–903.
  • Kim J, Seok YM, Jung KJ, Park KM. Reactive oxygen species/oxidative stress contributes to progression of kidney fibrosis following transient ischemic injury in mice. Am J Physiol Renal Physiol 2009;297:F461–F470.
  • Allen RG, Balin AK. Effects of oxygen on the antioxidant responses of normal and transformed cells. Exp Cell Res 2003;289:307–316.
  • Balin AK, Pratt L, Allen RG. Effects of ambient oxygen concentration on the growth and antioxidant defenses of human cell cultures established from fetal and postnatal skin. Free Radic Biol Med 2002;32:257–267.
  • Mandel LJ, Schnellmann RG, Jacobs WR. Intracellular glutathione in the protection from anoxic injury in renal proximal tubules. J Clin Invest 1990;85:316–324.
  • Paller MS, Patten M. Protective effects of glutathione, glycine, or alanine in an in vitro model of renal anoxia. J Am Soc Nephrol 1992;2:1338–1344.
  • Kim J, Park JW, Park KM. Increased superoxide formation induced by irradiation preconditioning triggers kidney resistance to ischemia-reperfusion injury in mice. Am J Physiol 2009;296:1202–1211.
  • Vlessis AA, Mela-Riker L. Potential role of mitochondrial calcium metabolism during reperfusion injury. Am J Physiol 1989;256:1196–1206.
  • Lee SH, Jo SH, Lee SM, Koh HJ, Song H, Park JW, . Role of NADP+ -dependent isocitrate dehydrogenase (NADP+ -ICDH) on cellular defence against oxidative injury by gamma-rays. Int J Radiat Biol 2004;80:635–642.
  • Jo SH, Son MK, Koh HJ, Lee SM, Song IH, Kim YO, . Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase. J Biol Chem 2001;276:16168–16176.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.