135
Views
1
CrossRef citations to date
0
Altmetric
Original Research Papers

Increased resistance to oxidative DNA damage of trabecular meshwork cells by E. coli FPG gene transfection

, , , , &
Pages 751-758 | Received 29 Oct 2010, Accepted 31 Mar 2011, Published online: 11 May 2011

References

  • Izzotti A. Gene-environment interactions in non-cancer degenerative diseases. Mutat Res 2009;667:1–3.
  • De Flora S, Izzotti A, Randerath K, Randerath E, Bartsch H, Nair J, . DNA adducts and chronic degenerative disease. pathogenetic relevance and implications in preventive medicine. Mutat Res 1996;366:197–238.
  • Izzotti A, Bagnis A, Sacca SC. The role of oxidative stress in glaucoma. Mutat Res 2006;612:105–114.
  • Izzotti A, Sacca SC, Cartiglia C, De Flora S. Oxidative deoxyribonucleic acid damage in the eyes of glaucoma patients. Am J Med 2003;114:638–646.
  • Hernandez MR. The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog Retin Eye Res 2000; 19:297–321.
  • Yucel YH, Zhang Q, Weinreb RN, Kaufman PL, Gupta N. Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog Retin Eye Res 2003;22:465–481.
  • Sacca SC, Izzotti A. Oxidative stress and glaucoma: injury in the anterior segment of the eye. Prog Brain Res 2008;173: 385–407.
  • Izzotti A, Sacca SC, Di Marco B, Penco S, Bassi AM. Antioxidant activity of timolol on endothelial cells and its relevance for glaucoma course. Eye (Lond) 2008;22:445–453.
  • Sacca SC, Izzotti A, Rossi P, Traverso C. Glaucomatous outflow pathway and oxidative stress. Exp Eye Res 2007;84:389–399.
  • Alvarado JA, Alvarado RG, Yeh RF, Franse-Carman L, Marcellino GR, Brownstein MJ. A new insight into the cellular regulation of aqueous outflow: how trabecular meshwork endothelial cells drive a mechanism that regulates the permeability of schlemm's canal endothelial cells. Br J Ophthalmol 2005;89:1500–1505.
  • Sacca SC, Bolognesi C, Battistella A, Bagnis A, Izzotti A. Gene-environment interactions in ocular diseases. Mutat Res 2009;667:98–117.
  • Luna C, Li G, Liton PB, Epstein DL, Gonzalez P. Alterations in gene expression induced by cyclic mechanical stress in trabecular meshwork cells. Mol Vis 2009;15:534–544.
  • Izzotti A, Sacca SC, Longobardi M, Cartiglia C. Mitochondrial damage in the trabecular meshwork of patients with glaucoma. Arch Ophthalmol 2010;128:724–730.
  • Alvarado J, Murphy C, Juster R. Trabecular meshwork cellularity in primary open-angle glaucoma and nonglaucomatous normals. Ophthalmology 1984;91:564–579.
  • Izzotti A, Sacca SC, Longobardi M, Cartiglia C. Sensitivity of ocular anterior chamber tissues to oxidative damage and its relevance to the pathogenesis of glaucoma. Invest Ophthalmol Vis Sci 2009;50:5251–5258.
  • Sacca SC, La Maestra S, Micale RT, Larghero P, Travaini G, Baluce B, Izzotti A. Ability of dorzolamide hydrochloride and timolol maleate to target mitochondria in glaucoma therapy. Arch Ophthalmol 2011;129:48–55.
  • Yu AL, Fuchshofer R, Kampik A, Welge-Lussen U. Effects of oxidative stress in trabecular meshwork cells are reduced by prostaglandin analogues. Invest Ophthalmol Vis Sci 2008; 49:4872–4880.
  • Dizdaroglu M, Kirkali G, Jaruga P. Formamidopyrimidines in DNA: mechanisms of formation, repair, and biological effects. Free Radic Biol Med 2008;45:1610–1621
  • Asagoshi K, Yamada T, Terato H, Ohyama Y, Monden Y, Arai T, . Distinct repair activities of human 7,8-dihydro-8-oxoguanine DNA glycosylase and formamidopyrimidine DNA glycosylase for formamidopyrimidine and 7,8-dihydro-8-oxoguanine. J Biol Chem 2000;275:4956–4964.
  • Coste F, Ober M, Carell T, Boiteux S, Zelwer C, Castaing B. Structural basis for the recognition of the FapydG lesion (2,6-diamino-4-hydroxy-5-formamidopyrimidine) by formamidopyrimidine-DNA glycosylase. J Biol Chem 2004;279: 44074–44083.
  • Frosina G. Prophylaxis of oxidative DNA damage by formamidopyrimidine-DNA glycosylase. Int J Cancer 2006;119:1–7.
  • Ropolo M, Geroldi A, Degan P, Andreotti V, Zupo S, Poggi A, . Accelerated repair and reduced mutagenicity of oxidative DNA damage in human bladder cells expressing the E. coli FPG protein. Int J Cancer 2006;118:1628–1634.
  • Izzotti A, Cartiglia C, Taningher M, De Flora S, Balansky R. Age-related increases of 8-hydroxy-2′-deoxyguanosine and DNA-protein crosslinks in mouse organs. Mutat Res 1999; 446:215–223.
  • Ropolo M, Degan P, Foresta M, D'Errico M, Lasiglie D, Dogliotti E, Casartelli G, . Complementation of the oxidatively damaged DNA repair defect in cockayne syndrome A and B cells by escherichia coli formamidopyrimidine DNA glycosylase. Free Radic Biol Med 2007;42:1807–1817.
  • Foresta M, Ropolo M, Degan P, Pettinati I, Kow YW, Damonte G, . Defective repair of 5-hydroxy-2′-deoxycytidine in cockayne syndrome cells and its complementation by escherichia coli formamidopyrimidine DNA glycosylase and endonuclease III. Free Radic Biol Med 2010;48:681–690.
  • Kubo K, Ide H, Wallace SS, Kow YW. A novel, sensitive, and specific assay for abasic sites, the most commonly produced DNA lesion. Biochemistry 1992;31:3703–3708.
  • Atamna H, Cheung I, Ames BN. A method for detecting abasic sites in living cells: age-dependent changes in base excision repair. Proc Natl Acad Sci USA 2000;97:686–691.
  • Frosina G. Gene prophylaxis by a DNA repair function. Mol Aspects Med 2007;28:323–344.
  • Boiteux S, Gajewski E, Laval J, Dizdaroglu M. Substrate specificity of the escherichia coli fpg protein (formamidopyrimidine-DNA glycosylase): excision of purine lesions in DNA produced by ionizing radiation or photosensitization. Biochemistry 1992;31:106–110.
  • Zharkov DO, Rieger RA, Iden CR, Grollman AP. NH2-terminal proline acts as a nucleophile in the glycosylase/AP-lyase reaction catalyzed by escherichia coli formamidopyrimidine-DNA glycosylase (fpg) protein. J Biol Chem 1997;272: 5335–5341.
  • Hoffman EA, Conley SM, Stamer WD, McKay BS. Barriers to productive transfection of trabecular meshwork cells. Mol Vis 2005;11:869–875.
  • Rohen JW, van der Zypen E. The phagocytic activity of the trabecular meshwork endothelium. An electron-microscopic study of the vervet (cercopithecus aethiops). Albrecht Von Graefes. Arch Klin Exp Ophthalmol 1968;175:143–160.
  • Polansky JR, Wood IS, Maglio MT, Alvarado JA. Trabecular meshwork cell culture in glaucoma research: evaluation of biological activity and structural properties of human trabecular cells in vitro. Ophthalmology 1984;91:580–595.
  • Hogg P, Calthorpe M, Batterbury M, Grierson I. Aqueous humor stimulates the migration of human trabecular meshwork cells in vitro. Invest Ophthalmol Vis Sci 2000;41: 1091–1098.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.