268
Views
24
CrossRef citations to date
0
Altmetric
Research Article

Oxidative stress in zinc-induced dopaminergic neurodegeneration: Implications of superoxide dismutase and heme oxygenase-1

, , , , , & show all
Pages 1207-1222 | Received 21 Mar 2011, Accepted 19 Jul 2011, Published online: 17 Aug 2011

References

  • Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Kortsha GX, Brown GG, Richardson RJ. (1997). Occupational exposures to metals as risk factors for Parkinson's disease. Neurology 48:650–658.
  • Singh C, Ahmad I, Kumar A. (2007). Pesticides and metals induced Parkinson's disease: involvement of free radicals and oxidative stress. Cell Mol Biol (Noisy-le-grand) 53:19–28.
  • Dexter DT, Carayon A, Javoy-Agid F, Agid Y, Wells FR, Daniel SE, (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson's disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114:1953–1975.
  • Jenner P, Dexter DT, Sian J, Schapira AH, Marsden CD. (1992). Oxidative stress as a cause of nigral cell death in Parkinson's disease and incidental Lewy body disease. The royal Kings and Queens Parkinson's disease research group. Ann Neurol 32:Suppl S82–7.
  • Kumar A, Ahmad I, Shukla S, Singh BK, Patel DK, Pandey HP, Singh C. (2010). Effect of zinc and paraquat co-exposure on neurodegeneration: Modulation of oxidative stress and expression of metallothioneins, toxicant responsive and transporter genes in rats. Free Radic Res 44:950–965.
  • Takeda A. (2000). Movement of zinc and its functional significance in the brain. Brain Res Rev 34:137–148.
  • Watt NT, Whitehouse IJ, Hooper NM. (2010). The role of zinc in Alzheimer's disease. Int J Alzheimers Dis 2011:971021. doi:10.4061/2011/971021.
  • Lin AMY, Fan SF, Yang DM, Hsu LL, Yang CH. (2003). Zinc-induced apoptosis in substantia nigra of rat brain: neuroprotection by vitamin D3. Free Radic Biol Med 34:1416–1425.
  • Jomova K, Vondrakova D, Lawson M, Valko M. (2010). Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345:91–104.
  • Miller RL, James-Kracke M, Sun GY, Sun AY. (2009). Oxidative and inflammatory pathways in Parkinson's disease. Neurochem Res 34:55–65.
  • Martin HM, Teismann P. (2009). Glutathione-a review on its role and significance in Parkinson's disease. FASEB J 23:3263–72.
  • Martin LJ. (2010). Mitochondrial and cell death mechanisms in neurodegenerative diseases. Pharmaceuticals (basel) 3:839–915.
  • Lin AMY. (2001). Coexistence of zinc and iron augmented oxidative injuries in the nigrostriatal dopaminergic system of SD rats. Free Radic Biol Med 30:225–231.
  • Hussain S, Ali SF. (2002). Zinc potentiates 1-methyl 1-4-phenyl-1,2,3,6-tetrahydropyridine induced dopamine depletion in caudate nucleus of mice brain. Neurosci Lett 335:25–28.
  • Lo HS, Chiang HC, Lin AMY, Chiang HY, Chu YC, Kao LS. (2004). Synergistic effects of dopamine and Zn2+ on the induction of PC12 cell death and dopamine depletion in the striatum: possible implication in the pathogenesis of Parkinson's disease. Neurobiol Dis 17:54–61.
  • Wu DC, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, Przedborski S. (2003). NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Proc Natl Acad Sci USA 100:6145–6150.
  • Anantharam V, Kaul S, Song C, Kanthsamy A, Kanthasamy AG. (2007). Pharmacological inhibition of neuronal NADPH oxidase protects against 1-methyl-4-phenylpyridinium (MPP+)-induced oxidative stress and apoptosis in mesencephalic dopaminergic neuronal cells. Neurotoxicol 28:988–997.
  • Cristovao AC, Choi DH, Baltazar G, Beal MF, Kim YS. (2009). The role of NADPH oxidase 1-derived reactive oxygen species in paraquat-mediated dopaminergic cell death. Antioxid Redox Signal 11:2105–2118.
  • Pong K, Rong Y, Doctrow SR, Baudry M. (2002). Attenuation of zinc-induced intracellular dysfunction and neurotoxicity by a synthetic superoxide dismutase/catalase mimetic in cultured cortical neurons. Brain Res 950:218–230.
  • Mollace V, Iannone M, Muscoli C, Palma E, Granato T, Rispoli V, . (2003). The role of oxidative stress in paraquat-induced neurotoxicity in rats: protection by non peptidyl superoxide dismutase mimetic. Neurosci Lett 335:163–166.
  • Noh KM, Koh JY. (2000). Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J Neurosci 20 RC111:1–5.
  • Saggu H, Cooksey J, Dexter D, Wells FR, Lees A, Jenner P, Marsden CD. (1989). A selective increase in particulate superoxide dismutase activity in parkinsonian substantia nigra. J Neurochem 53:692–697.
  • Hung HC, Lee EH. (1998). MPTP produces differential oxidative stress and antioxidative responses in the nigrostriatal and mesolimbic dopaminergic pathways. Free Radic Biol Med 24:76–84.
  • Ren JP, Zhao YW, Sun XJ. (2009). Toxic influence of chronic oral administration of paraquat on nigrostriatal dopaminergic neurons in C57BL/6 mice. Chin Med J 122:2366–71.
  • Yu YP, Ju WP, Li ZG, Wang YC, Xie AM. (2010). Acupunture inhibits oxidative stress and rotational behavior in 6-hydroxydopamine lesioned rat. Brain Res 1336:58–65.
  • Schipper HM. (2004). Heme oxygenase expression in human central nervous system disorders. Free Radic Biol Med 37: 1995–2011.
  • Minelli A, Conte C, Grotelli S, Bellezza I, Emiliani C, Bolanos JP. (2009). Cyclo(His-Pro) up-regulates heme oxygenase-1 via activation of Nrf2-ARE signaling. J Neurochem 111: 956–966.
  • Schipper HM, Liberman A, Stopa EG. (1998). Neural heme oxygenase-1 expression in idiopathic Parkinson's disease. Exp Neurol 150:60–68.
  • Mateo I, Infante J, Sanchaez-Juan P, Garcia-Gorostiaga I, Rodriquez-Rodriquez E, Vazquez-Hiquera JL, . (2010). Serum heme oxygenase-1 levels are increased in Parkinson's disease but not in Alzheimer's disease. Acta Neurol Scand 121:136–138.
  • Huang JY, Chuang JI. (2010). Fibroblast growth factor 9 upregulates heme oxygenase-1 and gamma glutamylcysteine synthetase expression to protect neurons from 1-methyl-4-phenylpyridinium toxicity. Free Radic Biol Med 49: 1099–1108.
  • Yamamoto N, Izumi Y, Matsuo T, Wakita S, Kume T, Takada-Taktori Y, . (2010). Elevation of heme oxygenase-1 by proteasome inhibition affords dopaminergic neuroprotection. J Neurosci Res 88:1934–1942.
  • Infante J, Garcia Gorostiaga I, Sanchez-Juan P, Sierra M, Martin Gurpegu JL, Terrazas J, . (2010). Synergistic effect of two oxidative stress-related genes (heme oxygenase-1 and GSK3b) on the risk of Parkinson's disease. Eur J Neurol 17:760–762.
  • Jazwa A, Cuadrado A. (2010). Targeting heme-oxygenase-1 for neuroprotection and neuroinflammation in neurodegenerative diseases. Curr Drug Targets 11:1517–1531.
  • Sian JP, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, . (1994). Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 36:348–355.
  • Kang MJ, Gil SJ, Koh HC. (2009). Paraquat induces alteration of the dopamine catabolic pathways and glutathione levels in the substantia nigra of mice. Toxicol Lett 188:148–152.
  • Tsai SJ, Kuo WW, Liu WH, Yin MC. (2010). Antioxidative and anti-inflammatory protection from carnosine in the striatum of MPTP-treated mice. J Agric Food Chem 58: 11510–11516.
  • Chen CJ, Liao SL. (2003). Zinc toxicity on neonatal cortical neurons: involvement of glutathione chelation. J Neurochem 85:443–453.
  • De La Cruz CP, Revilla E, Steffen V, Rodriguez-Gomez JA, Cano J, Machado A. (1996). Protection of the aged substantia nigra of the rat against oxidative damage by (-)-deprenyl. Br J Pharmacol 117:1756–1760.
  • Chiu K, Lau WM, Lau HT, So KF, Chang RCC. (2007). Micro-dissection of Rat Brain for RNA or Protein Extraction from Specific Brain Region. JoVE. 7. doi: 10.3791/269.
  • Singh AK, Tiwari MN, Upadhyay G, Patel DK, Singh D, Prakash O, Singh MP. (2010) Long term exposure to cypermethrin induces nigrostriatal dopaminergic neurodegeneration in adult rats: postnatal exposure enhances the susceptibility during adulthood. Neurobiol Aging [Epub ahead of print] doi:10.1016/j.neurobiolaging.2010.02.018
  • De Vito MJ, Wagner GC. (1989). Functional consequences following methamphetamine induced neuronal damage. Psychopharmacol 97:432–435.
  • Ohkawa H, Ohishi N, Yagi K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358.
  • Ahmad I, Kumar A, Shukla S, Prasad Pandey H, Singh C. (2008). The involvement of nitric oxide in maneb- and paraquat-induced oxidative stress in rat polymorphonuclear leukocytes. Free Radic Res 42:849–862.
  • Sinha AK. (1972). Colorimetric assay of catalase. Anal Chem 47:389–394.
  • Pabst JM, Habig WH, Jakoby WB. (1974). Glutathione-S-transferase A. J Biol Chem 249:7140–7150.
  • Nishikimi M, Appaji N, Yagi K. (1972). The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46:849–855.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. (1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275.
  • Sugino N, Telleria CM, Gibori G. (1998). Differential regulation of copper-zinc superoxide dismutase and manganese superoxide dismutase in the rat corpus luteum: Induction of manganese superoxide dismutase messenger ribonucleic acid by inflammatory cytokines. Biol Reprod 59:208–215.
  • Chen CY, Jang JH, Li MH, Surh YJ. (2005). Reserveratrol upregulates heme oxygenase-1 expression via activation of NF-E2-related factor 2 in PC12 cells. Biochem Biophys Res Commun 331:993–1000.
  • Luceri C, Caderni G, Sanna A, Dolara P. (2002). Red wine and black tea polyphenols modulate the expression of cyclooxygenase-2, inducible nitric oxide synthase and glutathione-related enzymes in azoxymethane-induced f344 rat colon tumors. J Nutr 132:1376–1379.
  • Garcon G, Gosset P, Zerimech F, Grave-Descampiaux B, Shirali P. (2004). Effect of Fe2O3 on the capacity of benzo(a)pyrene to induce polycyclic aromatic hydrocarbon-metabolizing enzymes in the respiratory tract of Sprague-Dawley rats. Toxicol Lett 150:179–189.
  • Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P, Marsden CD. (1989). Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson's disease. J Neurochem 52:1830–1836.
  • Forsleff L, Schauss AG, Bier ID, Stuart S. (1999). Evidence of functional zinc deficiency in Parkinson's disease. J Altern Complement Med 5:57–64.
  • Jimenez-Jimenez FJ, Fernandez-Calle P, Martinez-Vanaclocha M, Herrero E, Molina JA, Vazquez A, Codoceo R. (1992). Serum, levels of zinc and copper in patients with Parkinson's disease. J Neurol Sci 112:30–33.
  • Jimenez-Jimenez FJ, Molina JA, Aguilar MV, Meseguer I, Mateos-Vega CJ, Gonzalez-Munoz MJ, . (1998). Cerebrospinal fluid levels of transition metals in patients with Parkinson's disease. J Neural Transm 105:497–505.
  • Patel S, Singh V, Kumar A, Gupta YK, Singh MP. (2006). Status of antioxidant defense system and expression of toxicant responsive genes in striatum of maneb- and paraquat-induced Parkinson's disease phenotype in mouse: mechanism of neurodegeneration. Brain Res 1081:9–18.
  • Thiruchelvam M, McCormack A, Richfield EK, Baggs RB, Tank AW, Di Monte DA, Cory-Slechta DA. (2003). Age-related irreversible progressive nigrostriatal dopaminergic neurotoxicity in the paraquat and maneb model of the Parkinson's disease phenotype. Eur J Neurosci 18:589–600.
  • Singh S, Singh K, Patel S, Patel DK, Singh C, Nath C, Singh MP. (2008). Nicotine and caffeine-mediated modulation of toxicant responsive genes and vesicular monoamine transporter-2 in 1-methyl 4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease phenotype in mouse. Brain Res 1207:193–206.
  • Gupta SP, Patel S, Yadav S, Singh AK, Singh S, Singh MP. (2010). Involvement of nitric oxide in maneb- and paraquat-induced Parkinson's disease phenotype in mouse: is there any link with lipid peroxidation? Neurochem Res 35:1206–1213.
  • Miller RL, Sun GY, Sun AY. (2007). Cytotoxicity of paraquat in microglial cells: involvement of PKCdelta- and ERK1/2-dependent NADPH oxidase. Brain Res 1167:129–139.
  • Kunikowska G, Jenner P. (2003). Alterations in m-RNA expression for Cu, Zn-superoxide dismutase and glutathione peroxidase in the basal ganglia of MPTP-treated marmosets and patients with Parkinson's disease. Brain Res 968: 206–218.
  • Cadet JL, Sheng P, Ali S, Rothman R, Carlson E, Epstein C. (1994). Attenuation of methamphetamine-induced neurotoxicity in copper/zinc superoxide dismutase transgenic mice. J Neurochem 62:380–383.
  • Thiruchelvam M, Prokopenko O, Cory-Slechta DA, Buckley B, Mirochnitchenko O. (2005). Overexpression of superoxide dismutase or glutathione peroxidase protects against the paraquat + maneb-induced Parkinson disease phenotype. J Biol Chem 280:22530–22539.
  • Peng J, Stevenson FF, Doctrow SR, Andersen JK. (2005). Superoxide dismutase/catalase mimetics are neuroprotective against selective paraquat-mediated dopaminergic neuron death in the substantial nigra: implications for Parkinson disease. J Biol Chem 280:29194–29198.
  • Lessner G, Schmitt O, Haas SJ, Mikkat S, Kreutzer M, Wree A, Glocker MO. (2010). Differential proteome of the striatum from hemiparkinsonian rats displays vivid structural remodeling processes. J Proteome Res 9:4671–4687.
  • Kauppinen TM, Higashi Y, Suh SW, Escartin C, Nagasawa K, Swanson RA. (2008). Zinc triggers microglial activation. J Neurosci 28:5827–5835.
  • Hung SY, Liou HC, Kang KH, Wu RM, Wen CC, Fu WM. (2008). Overexpression of heme oxygenase-1 protects dopaminergic neurons against 1-methyl-4-phenylpyridinium-induced neurotoxicity. Mol Pharmacol 74:1564–1575.
  • Quesada A, Micevvch P, Handforth A. (2009). C-terminal mechano growth factor protects dopamine neurons: a novel peptide that induces heme oxygenase-1. Exp Neurol 220:255–266.
  • Barlow BK, Lee DW, Cory-Slechta DA, Opanashuk LA. (2005). Modulation of antioxidant defense system by the environmental pesticide maneb in dopaminergic cells. Neurotoxicol 26:63–75.
  • Yang W, Tiffany-Castiglioni E. (2005). The bipyridyl herbicide paraquat produces oxidative stress-mediated toxicity in human neuroblastoma SH-SY5Y cells: relevance to the dopaminergic pathogenesis. J Toxicol Environ Health A 68:1939–1961.
  • Noriega GO, Gonzales S, Tomaro M, Battle AMDC. (2002). Paraquat-generated oxidative stress in rat liver induces hemeoxygenase -1 and aminolevulinic acid synthase. Free Radic Res 36:633–639.
  • Smeyne M, Boyd J, Shepherd KR, Jiao Y, Pond BB, Hatler M, . (2007). GST π expression mediates dopaminergic neuron sensitivity in experimental parkinsonism. Proc Natl Acad Sci 104:1977–1982.
  • Shi M, Bradner J, Bammler TK, Wilson AM, Montine TJ, Pan C, Zhang J. (2009). Identification of glutathione S-transferase pi as a protein involved in Parkinson disease progression. Am J Pathol 175:54–65.
  • Garcia JC, Remires D, Leiva A, Gonzalez R. (2000). Depletion of brain glutathione potentiates the effect of 6-hydroxydopamine in a rat model of Parkinson's disease. J Mol Neurosci 14:147–153.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.