310
Views
27
CrossRef citations to date
0
Altmetric
Review Article

Arjunolic acid: beneficial role in type 1 diabetes and its associated organ pathophysiology

&
Pages 815-830 | Received 23 Feb 2012, Accepted 04 Apr 2012, Published online: 03 May 2012

References

  • Maritim AC, Sanders RA, Watkins JB 3rd. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 2003;17:24–38.
  • Lasker RD. The diabetes control and complications trial—implications for policy and practice. N Engl J Med 1993;329:1035–1036.
  • Kikkawa R. Chronic complications in diabetes mellitus. Br J Nutr 2000;84:S183–S185.
  • West IC. Radicals and oxidative stress in diabetes. Diabet Med 2000;17:171–180.
  • Rosen P, Nawroth PP, King G, Moller W, Tritschler HJ, Packer L. The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes/Metab Res Rev 2001;17:189–212.
  • Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001;414:813–820.
  • Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes 2005;54:1615–1625.
  • Haidara MA, Yassin HZ, Zakula Z, Mikhailidis DP, Isenovic ER. Diabetes and antioxidants: myth or reality? Curr Vasc Pharmacol 2010;8:661–672.
  • Turko IV, Marcondes S, Murad F. Diabetes-associated nitration of tyrosine and inactivation of succinyl-CoA:3-oxoacid-CoA transferase. Am J Physiol Heart Circ Physiol 2001; 281:H2289–H2294.
  • Bonnefont-Rousselot D. Glucose and reactive oxygen species. Curr Opin Clin Nutr Metab Care 2002;5:561–568.
  • Ramana KV, Chandra D, Srivastava S, Bhatnagar A, Srivastava SK. Nitric oxide regulates the polyol pathway of glucose metabolism in vascular smooth muscle cells. FASEB J 2003;17:417–425.
  • Steinberg H, Baron A. Vascular function, insulin resistance and fatty acids. Diabetologia 2002;45:623–634.
  • Stojiljkovic MP, Lopes HF, Zhang D, Morrow JD, Goodfriend TL, Egan BM. Increasing plasma fatty acids elevates F2- isoprostanes in humans: implications for the cardiovascular risk factor cluster. J Hypertens 2002;20:1215–1221.
  • Rolo AP, Palmeira CM. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol 2006;212:167–178.
  • Seghrouchni I, Drai J, Bannier E, Riviere J, Calmard P, Garcia I, Orgiazzi J, Revol A. Oxidative stress parameters in type I, type II and insulin-treated type 2 diabetes mellitus; insulin treatment efficiency. Clin Chim Acta 2002;321:89–96.
  • Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010;107:1058–1070.
  • Geerlings SE, Hoepelman AI. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunol Med Microbiol 1999;26:259–265.
  • Chang FY, Shaio MF. Decreased cell-mediated immunity in patients with noninsulin dependent diabetes mellitus. Diabetes Res Clin Pract 1999;528:137–146.
  • Thorvaldson L, Holstad M, Sandler S. Cytokine release by mueine spleen cells following multiple low dose streptozotocin-induced diabetes and treatment with a TNFα transcriptional inhibitor. Int Immunopharmacol 2003;3:1609–1617.
  • Kolb H. Benign versus destructive insulitis. Diabetes Metab Rev 1997;13:139–146.
  • Mandrup-Poulsen T, Bendtzen K, Nielsen JH, Bendixen G, Nerup J. Cytokines cause functional and structural damage to isolated islets of Langerhans. Allergy 1985;40:424–429.
  • Butler SO, Btaiche IF, Alaniz C. Relationship between hyperglycemia and infection in critically ill patients. Pharmacotherapy 2005;25:963–976.
  • Rubinstein R, Genaro AM, Motta A, Cremaschi G, Wald MR. Impaired immune responses in streptozotocin-induced type I diabetes in mice. Involvement of high glucose. Clin Exp Immunol 2008;154:235–246.
  • Hao J, Shen W, Tian C, Liu Z, Ren J, Luo C, . Mitochondrial nutrients improve immune dysfunction in the type 2 diabetic Goto-Kakizaki rats. J Cell Mol Med 2009;13:701–711.
  • World Health Organization: Diabetes mellitus: report of a WHO study group. WHO Technical Report Series 1985:727.
  • Osterby R, Gall MA, Schmitz A, Nielsen FS, Nyberg G, Parving HH. Glomerular structure and function in proteinuric type 2 (non-insulin dependent) diabetic patients, Diabetologia 1993;36:1064–1070.
  • Steffes MW, Bilous RW, Sutherland DE, Mauer SM. Cell and matrix components of the glomerular mesangium in type I diabetes. Diabetes 1992;41:679–684.
  • Hodgkinson AD, Sondergaard KL, Yang B, Cross DF, Millward BA, Demaine AG. Aldose reductase expression is induced by hyperglycemia in diabetic nephropathy, Kidney Int 2001;60:211–218.
  • Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, . High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD (P) H oxidase in cultured vascular cells. Diabetes 2000;49:1939–1945.
  • Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, . Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000;404:787–790.
  • Chaturvedi LS, Koul S, Sekhon A, Bhandari A, Menon M, Koul HK. Oxalate selectively activates p38 mitogen-activated protein kinase and c-Jun N-terminal kinase signal transduction pathways in renal epithelial cells. J Biol Chem 2002;277:13321–13330.
  • Li Q, Xie P, Huang J, Gu Y, Zeng W, Song H. Polymorphisms and functions of the aldose reductase gene 5′ regulatory region in Chinese patients with type 2 diabetes mellitus. Chin Med J 2002;115:209–213.
  • Haffner S, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998;339:229–234.
  • Cai L, Kang YJ. Oxidative stress and diabetic cardiomyopathy: a brief review. Cardiovasc Toxicol 2001;1:181–193.
  • Crespo MJ, Zalacain J, Dunbar DC, Cruz N, Arocho L. Cardiac oxidative stress is elevated at the onset of dilated cardiomyopathy in streptozotocin-diabetic rats. J Cardiovasc Pharmacol Ther 2008;13:64–71.
  • Pierce GN, Russel JC. Regulation of intracellular Ca2 + in the heart during diabetes. Cardiovasc Res 1997;34:41–47.
  • Boudina S, Abel ED. Diabetic cardiomyopathy revisited. Circulation 2007;115:3213–3223.
  • Ceriello A. New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy. Diabetes Care 2003;26:1589–1596.
  • Johansen JS, Harris AK, Rychly DJ, Ergul A. Oxidative stress and the use of antioxidants in diabetes: Linking basic science to clinical practice. Cardiovasc Diabetol 2005;4:5–11.
  • Tolman KG, Fonseca V, Dalpiaz A, Tan MH. Spectrum of liver disease in type 2 diabetes and management of patients with diabetes and liver disease. Diabetes Care 2007;30:734–743.
  • de Marco R, Locatelli F, Zoppini G, Verlato G, Bonora E, Muggeo M. Cause-specific mortality in type 2 diabetes: The Verona Diabetes Study. Diabetes Care 1999;22:756–761.
  • Balkau B, Eschwege E, Ducimetiere P, Richard JL, Warnet JM. The high risk of death by alcohol related diseases in subjects diagnosed as diabetic and impaired glucose tolerant: the Paris Prospective Study after 15 years of follow-up. J Clin Epidemiol 1991;44:465–474.
  • Caldwell SH, Oelsner DH, Iezzoni JC, Hespenheide EE, Battle EH, Driscoll CJ. Cryptogenic cirrhosis: clinical characterization and risk factors for underlying disease. Hepatology 1999;29: 664–669.
  • The U.S. Organ Procurement and Transplantation Network and the Scientific Registry of Transplant Recipients: OPTN/ SRTR annual report: table 9.4a: transplant recipient characteristics, 1995 to 2004: recipients of deceased donor livers [Internet], 2 May 2005. Available from http://www.optn.org/AR2005/904a_rec-dgn_li.htm. Ann Arbor, MI. Accessed on 1 September 2006.
  • Trombetta M, Spiazzi G, Zoppini G, Muggeo M. Review article: type 2 diabetes and chronic liver disease in the Verona diabetes study. Aliment Pharmacol Ther 2005;22:24–27.
  • McLennan SV, Heffernan S, Wright L, Rae C, Fisher E, Yue DK, Turtle JR. Changes in hepatic glutathione metabolism in diabetes. Diabetes 1991;40:344–348.
  • Saxena AK, Srivastava P, Kale RK, Baquer NZ. Impaired antioxidant status in diabetic rat liver. Effect of vanadate. Biochem Pharmacol 1993;45:539–542.
  • Marangiello R, Giorgetti R. A case of glycogenosis in a patient with insulin dependent diabetes. Minerva Pediatr 1996;48: 279–281.
  • Chatila R, West AB. Hepatomegaly and abnormal liver tests due to glycogenosis in adults with diabetes. Medicine 1996;75: 327–333.
  • Shams ME, Al-Gayyar MM, Barakat EA. Type 2 diabetes mellitus-induced hyperglycemia in patients with NAFLD and normal LFTs: relationship to lipid profile, oxidative stress and pro-inflammatory cytokines. Sci Pharm 2011;79:623–634.
  • Rahimi R, Nikfar S, Larijani B, Abdollahi M. A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother 2005;59:365–373.
  • Krishnaiah D, Sarbatly R, Nithyanandam R. A review of the antioxidant potential of medicinal plant species. Food Bioprod Process 2011;89:217–233.
  • Scartezzini P, Speroni E. Review on some plants of Indian traditional medicine with antioxidant activity. J Ethnopharmacol 2000;71:23–43.
  • Mukherjee PK, Maiti K, Mukherjee K, Houghton PJ. Leads from Indian medicinal plants with hypoglycemic potentials. J Ethnopharmacol 2006;106:1–28.
  • Grover JK, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 2002;81:81–100.
  • Manna P, Sinha M, Sil PC. Arjunolic acid, a triterpenoid saponin, ameliorates arsenic-induced cyto-toxicity in hepatocytes. Chem Biol Interact 2007;170:187–200.
  • Masoko P, Mdee LK, Mampuru LJ, Eloff JN. Biological activity of two related triterpenes isolated from Combretum nelsonii (Combretaceae) leaves. Nat Prod Res 2008;22:1074–1084.
  • Djoukeng JD, Abou-Mansour E, Tabacchi R, Tapondjou AL, Bouda H, Lontsi D. Antibacterial triterpenes from Syzygium guineense (Myrtaceae). J Ethnopharmacol 2005;101:283–286.
  • Kim DH, Han KM, Chung IS, Kim DK, Kim SH, Kwon BM, . Triterpenoids from the flower of Campsis grandiflora K. Schum. as human acyl-CoA: cholesterol acyltransferase inhibitors. Arch Pharm Res 2005;28:550–556.
  • Wille PR, Ribeiro-do-Valle RM, Simões CM, Gabilan NH, Nicolau M. Effect of quercetin on tachykinin-induced plasma extravasation in rat urinary bladder. Phytother Res 2001;15: 444–446.
  • Hemalatha T, Pulavendran S, Balachandran C, Manohar BM, Puvanakrishnan R. Arjunolic acid: a novel phytomedicine with multifunctional therapeutic applications. Indian J Exp Biol 2010;48:238–247.
  • Chaudhari M, Mengi S. Evaluation of phytoconstituents of Terminalia arjuna for wound healing activity in rats. Phytother Res 2006;20:799–805.
  • Bhakuni RS, Shukla YN, Tripathi AK, Prajapati V, Kumar S. Insect growth inhibitor activity of arjunolic acid isolated from Cornus capitata. Phytother Res 2002;16:S68–S70.
  • Manna P, Sinha M, Sil PC. Protection of arsenic-induced hepatic disorder by arjunolic acid. Basic Clin Pharmacol Toxicol 2007;101:333–338.
  • Manna P, Sinha M, Sil PC. Arsenic-induced oxidative myocardial injury: protective role of arjunolic acid. Arch Toxicol 2008;82:137–149.
  • Sinha M, Manna P, Sil PC. Arjunolic acid attenuates arsenic-induced nephrotoxicity. Pathophysiology 2008;15:147–156.
  • Sinha M, Manna P, Sil PC. Protective effect of arjunolic acid against arsenic-induced oxidative stress in mouse brain. J Biochem Mol Toxicol 2008;22:15–26.
  • Manna P, Sinha M, Sil PC. Protection of arsenic-induced testicular oxidative stress by arjunolic acid. Redox Rep 2008; 13:67–77.
  • Ghosh J, Das J, Manna P, Sil PC. Cytoprotective effect of arjunolic acid in response to sodium fluoride mediated oxidative stress and cell death via necrotic pathway. Toxicol In Vitro 2008;22:1918–1926.
  • Ghosh J, Das J, Manna P, Sil PC. Arjunolic acid, a triterpenoid saponin, prevents acetaminophen (APAP)-induced liver and hepatocyte injury via the inhibition of APAP bioactivation and JNK-mediated mitochondrial protection. Free Radic Biol Med 2009;240:73–87.
  • Ghosh J, Das J, Manna P, Sil PC. Acetaminophen induced renal injury via oxidative stress and TNF-alpha production: Therapeutic potential of arjunolic acid. Toxicology 2010;268: 8–18.
  • Ghosh J, Das J, Manna P, Sil PC. The protective role of arjunolic acid against doxorubicin induced intracellular ROS dependent JNK-p38 and p53-mediated cardiac apoptosis. Biomaterials 2011;32:4857–4866.
  • Manna P, Das J, Ghosh J, Sil PC. Streptozotocin induced activation of oxidative stress responsive splenic cell signaling pathways: Protective role of arjunolic acid. Toxicol Appl Pharmacol 2010;244:114–129.
  • Manna P, Sinha M, Sil PC. Protective role of arjunolic acid in response to streptozotocin-induced type-I diabetes via the mitochondrial dependent and independent pathways. Toxicology 2009;257:53–63.
  • Ho E, Chen G, Bray TM. Alpha-phenyl-tert-butylnitrone (PBN) inhibits NFκB activation offering protection against chemically induced diabetes. Free Radic Biol Med 2000;28: 604–614.
  • Jurgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC. Bax directly induces release of cytochrome C from isolated mitochondria. Proc Natl Acad Sci USA 1998;95: 4997–5002.
  • Keeble JA, Gilmore AP. Apoptosis commitment – translating survival signals into decisions on mitochondria. Cell Res 2007;17:976–984.
  • Chen H, Brahmbhatt S, Gupta A, Sharma AC. Duration of streptozotocin-induced diabetes differentially affects p38- mitogen-activated protein kinase (MAPK) phosphorylation in renal and vascular dysfunction. Cardiovasc Diabetol 2005; 4:3.
  • Stambe C, Atkins RC, Tesch GH, Kapoun AM, Hill PA, Schreiner GF, . Blockade of p38alpha MAPK ameliorates acute inflammatory renal injury in rat anti-GBM glomerulonephritis. J Am Soc Nephrol 2003;14:338–351.
  • Manna P, Sinha M, Sil PC. Prophylactic role of arjunolic acid in response to streptozotocin mediated diabetic renal injury: activation of polyol pathway and oxidative stress responsive signaling cascades. Chem Biol Interact 2009;181:297–308.
  • Drel VR, Pacher P, Stevens MJ, Obrosova IG. Aldose reductase inhibition counteracts nitrosative stress and poly (ADP-ribose) polymerase activation in diabetic rat kidney and high-glucose-exposed human mesangial cells. Free Radic Biol Med 2006;40: 1454–1465.
  • Artenie A, Artenie R, Ungureanu D, Covic A. Correlation between increase of oxidative stress and microalbuminuria in type-1 diabetic patients. Rev Med Chir Soc Med Nat Iasi 2004;108:777–781.
  • Koya D, Haneda M, Nakagawa H, Isshiki K, Sato H, Maeda S, . Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. FASEB J 2000;14: 439–447.
  • Dunlop M. Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney Int 2000;77:3–12.
  • Chaturvedi LS, Koul S, Sekhon A, Bhandari A, Menon M, Koul HK. Oxalate selectively activates p38 mitogen-activated protein kinase and c-Jun N-terminal kinase signal transduction pathways in renal epithelial cells. J Biol Chem 2002;277:13321–13330.
  • Price SA, Agthong S, Middlemas AB, Tomlinson DR. Mitogen-activated protein kinase p38 mediates reduced nerve conduction velocity in experimental diabetic neuropathy: interactions with aldose reductase. Diabetes 2004;53:1851–1856.
  • Ha H, Yu MR, Choi YJ, Lee HB. Activation of protein kinase C-d and -e by oxidative stress in early diabetic kidney. Am J Kidney Dis 2001;38:204–207.
  • Haneda M, Araki S, Togawa M, Sugimoto T, Isono M, Kikkawa R. Mitogen-activated protein kinase cascade is activated in glomeruli of diabetic rats and glomerular mesangial cells cultured under high glucose conditions. Diabetes 1997;46: 847–853.
  • Ha H, Yu MR, Choi YJ, Kitamura M, Lee HB. Role of high glucose-induced nuclear factor-kappa B activation in monocyte chemoattractant protein-1 expression by mesangial cells. J Am Soc Nephrol 2002;13:894–902.
  • Verzola D, Bertolotto MB, Villaggio B, Ottonello L, Dallegri F, Frumento G, . Taurine prevents apoptosis induced by high glucose in human tubule renal cells. J Investig Med 2002; 50:443–451.
  • Fasching P, Veitl M, Rohac M, Streli C, Schneider B, Waldhausl W, Wagner OF. Elevated concentrations of circulating adhesion molecules and their association with microvascular complications in insulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1996;81:4313–4317.
  • Devaraj S, Glaser N, Griffen S, Wang-Polagruto J, Miguelino E, Jialal I. Increased monocytic activity and biomarkers of inflammation in patients with type 1 diabetes. Diabetes 2006;55:774–779.
  • Pambianco G, Costacou T, Ellis D, Becker DJ, Klein R, Orchard TJ. The 30-year natural history of type 1 diabetes complications. Diabetes 2006;55:1463–1469.
  • Soedamah-Muthu SS, Fuller JH, Mulnier HE, Raleigh VS, Lawrenson RA, Colhoun HM. High risk of cardiovascular disease in patients with type 1 diabetes in the U.K. Diabetes Care 2006;29:798–804.
  • Nishio Y, Kashiwagi A, Taki H, Shinozaki K, Maeno Y, Kojima H, . Altered activities of transcription factors and their related gene expression in cardiac tissues of diabetic rats. Diabetes 1998;47:1318–1325.
  • Sen S, Roy M, Chakraborti AS. Ameliorative effects of glycyrrhizin on streptozotocin-induced diabetes in rats. J Pharm Pharmacol 2011;63:287–296.
  • Manna P, Sil PC. Impaired redox signaling and mitochondrial uncoupling contributes vascular inflammation and cardiac dysfunction in type 1 diabetes: protective role of arjunolic acid. Biochimie 2012;94:786–797.
  • Ulusu NN, Turan B. Beneficial effects of selenium on some enzymes of diabetic rat heart. Biol Trace Elem Res 2005;103:207–216.
  • Baldwin AS. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 1996;14:649–683.
  • Barnes PJ, Larin M. Mechanisms of disease: nuclear factor-κB a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997;336:1066–1071.
  • Seckin D, Ilhan N, Ilhan N, Ertugrul S. Glycaemic control, markers of endothelial cell activation and oxidative stress in children with type 1 diabetes mellitus. Diabetes Res Clin Pract 2006;73:191–197.
  • Zhang SX, Wang JJ, Lu K, Mott R, Longeras R, Ma JX. Therapeutic potential of angiostatin in diabetic nephropathy. J Am Soc Nephrol 2006;17:475–486.
  • Bueno OF, Molkentin JD. Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death. Circ Res 2009;91:776–778.
  • Li JM, Gall NP, Grieve DJ, Chen M, Shah AM. Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension 2002;40:477–484.
  • Tomlinson DR. Mitogen-activated protein kinases as glucose transducers for diabetic complications. Diabetologia 1999;42:1271–1281.
  • Manna P, Das J, Ghosh J, Sil PC. Contribution of type 1 diabetes to rat liver dysfunction and cellular damage via activation of NOS, PARP, IκBα/NF-κB, MAPKs and mitochondria dependent pathways: prophylactic role of arjunolic acid. Free Radic Biol Med 2010;48:1465–1484.
  • Vermeulen L, De Wilde G, Van Damme P, Vanden Berghe W, Haegernan G. Transcriptional activation of the NF-κB p65 subunit by mitogen- and stress activated protein kinase-1 (MSK1). EMBO J 2003;22:1313–1324l.
  • Tomlinson DR. Mitogen-activated protein kinases as glucose transducers for diabetic complications. Diabetologia 1999;42:1271–1281.
  • Keeble JA, Gilmore AP. Apoptosis commitment–translating survival signals into decisions on mitochondria. Cell Res 2007;17:976–984.
  • Verzola D, Bertolotto MB, Villaggio B, Ottonello L, Dallegri F, Frumento G, . Taurine prevents apoptosis induced by high glucose in human tuble renal cells. J Investig Med 2002;50:443–451.
  • Virag L, Marmer DJ, Szabo C. The crucial role of apopain in the peroxynitrite-induced apoptotic DNA fragmentation. Free Radic Biol Med 1998;25:1075–1082.
  • Golbidi S, Ebadi SA, Laher I. Antioxidants in the treatment of diabetes. Curr Diabetes Rev 2011;7:106–125.
  • Scott JA, King GL. Oxidative stress and antioxidant treatment in diabetes. Ann N Y Acad Sci 2004;1031:204–213.
  • Johansen JS, Harris AK, Rychly DJ, Ergul A. Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc Diabetol 2005;4:5.
  • Ruhe RC, McDonald RB. Use of antioxidant nutrients in the prevention and treatment of type 2 diabetes. J Am Coll Nutr 2001;20:363S–369S.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.