600
Views
26
CrossRef citations to date
0
Altmetric
Research Article

Mechanism of radiation-induced reactions in aqueous solution of coumarin-3-carboxylic acid: Effects of concentration, gas and additive on fluorescent product yield

, , , , , , , & show all
Pages 861-871 | Received 05 Feb 2012, Accepted 11 Apr 2012, Published online: 09 May 2012

References

  • Chapman JD, Reuvers AP, Borsa J, Greenstock CL. Chemical radioprotection and radiosensitization of mammalian cells growing in vitro. Radiat Res 1973;56:291–306.
  • Delara CM, Jenner TJ, Townsend KMS, Marsden SJ, O’Neill P. The effect of dimethyl-sulfoxide on the induction of DNA double-strand breaks in V79-4 mammalian-cells by alpha-particles. Radiat Res 1995;144:43–49.
  • Hatano Y, Katsumura Y, Mozumder A (eds). Charged particle and photon interactions with matter: recent advances, applications and interfaces. Boca Raton/New York/Abingdon: CRC Press, Taylor & Francis Group; 2010.
  • Mozumder A, Hatano Y (eds). Charged particle and photon interactions with matter. Chemical, physicochemical and biological consequences with applications. New York: Marcel Dekker, Inc.; 2004.
  • LaVerne JA. Track effects of heavy ions in liquid water. Radiat Res 2000;153:487–496.
  • Hall EJ. Radiobiology for the radiation biologist. Philadelphia: J. B. Lippincott Company; 1994.
  • Noda K, Furukawa T, Iwata Y, Kanai T, Kanazawa M, Kanematsu N, . Design of carbon therapy facility based on 10 years experience at HIMAC. Nucl Instrum Methods Phys Res, Sect A 2006;562:1038–1041.
  • Belloni J, Mostafavi M, Douki T, Spotheim-Maurizot M. Radiation chemistry – From basics to applications in material and life sciences. L’Actualite Chime. L’Editeur: EDP Sciences; 2008(316). pp. I–XX.
  • Buxton GV. Radiation chemistry of the liquid state: (1) Water and homogeneous aqueous solutions. In: Farhataziz, Rodgers MAJ (eds). Radiation chemistry, principles and applications. New York: VCH Publishers; 1987. p 321–349.
  • Farhataziz, Rodgers MAJ (eds). Radiation chemistry, principles and applications. New York: VCH Publishers; 1987.
  • Spinks JWT, Woods RJ. An introduction to radiation chemistry. New York/Chichester/Brisbane/Toronto/Singapore: John Wiley & Sons, Inc.; 1990.
  • Roots R, Okada S. Protection of DNA molecules of cultured mammalian-cells from radiation-induced single-strand scissions by various alcohols and SH compounds. Int J Radiat Biol Relat Stud Phys Chem Med 1972;21:329–342.
  • Roots R, Okada S. Estimation of life times and diffusion distances of radicals involved in X-ray-induced DNA strand breaks or killing of mammalian-cells. Radiat Res 1975;64: 306–320.
  • von Sonntag C. The chemical basis of radiation biology. New York: Taylor & Francis; 1987.
  • Baldacchino G. Pulse radiolysis in water with heavy-ion beams. A short review. Radiat Phys Chem 2008;77: 1218–1223.
  • Baldacchino G, Le Parc D, Hickel B, Gardes-Albert M, Abedinzadeh Z, Jore D, . Direct observation of HO2/O2 − free radicals generated in water by a high-linear energy transfer pulsed heavy-ion beam. Radiat Res 1998;149:128–133.
  • Baldacchino G, Vigneron G, Renault JP, Pin S, Abedinzadeh Z, Deycard S, . A nanosecond pulse radiolysis study of the hydrated electron with high energy ions with a narrow velocity distribution. Chem Phys Lett 2004;385:66–71.
  • Baldacchino G, Vigneron G, Renault JP, Pin S, Remita S, Abedinzadeh Z, . A nanosecond pulse radiolysis study of the hydrated electron with high energy carbon ions. Nucl Instrum Methods Phys Res, Sect B 2003;209:219–223.
  • Taguchi M, Baldacchino G, Kurashima S, Kimura A, Sugo Y, Katsumura Y, Hirota K. Transient absorption measurement system using pulsed energetic ion. Radiat Phys Chem 2009;78:1169–1174.
  • Appleby A, Christman EA. Radiation-chemistry of high- energy carbon, neon and argon ions – effects of nuclear fragmentation. J Radioanal Nucl Chem 1985;94:241–250.
  • Appleby A, Christman EA, Jayko M. Radiation-chemistry of high-energy carbon, neon and argon ions – hydroxyl radical yields. Radiat Res 1985;104:263–271.
  • Appleby A, Christman EA, Jayko M. Radiation-chemistry of high-energy carbon, neon and argon ions – hydrated electron yields. Radiat Res 1986;106:300–306.
  • LaVerne JA, Pimblott SM. Scavenger and time dependences of radicals and molecular products in the electron radiolysis of water – examination of experiments and models. J Phys Chem 1991;95:3196–3206.
  • LaVerne JA, Pimblott SM. Yields of hydroxyl radical and hydrated electron scavenging reactions in aqueous-solutions of biological interest. Radiat Res 1993;135:16–23.
  • Pimblott SM, LaVerne JA, Bartels DM, Jonah CD. Reconciliation of transient absorption and chemically scavenged yields of the hydrated electron in radiolysis. J Phys Chem 1996;100:9412–9415.
  • Chitose N, Katsumura Y, Domae M, Cai ZL, Muroya Y, Murakami T, LaVerne JA. Radiolysis of aqueous solutions with pulsed ion beams. 4. Product yields for proton beams in solutions of thiocyanate and methyl viologen/formate. J Phys Chem A 2001;105:4902–4907.
  • Hugg GL. Optical spectra of nonmetallic inorganic transient species in aqueous solution. Washington, D.C.: Radiation Chemistry Data Center, Radiation Laboratory, University of Notre Dame; 1981. Report no. NSRDS-NBS 69. 1–167 pp.
  • Milosavljevic BH, LaVerne JA. Pulse radiolysis of aqueous thiocyanate solution. J Phys Chem A 2005;109:165–168.
  • Taguchi M, Kimura A, Watanabe R, Hirota K. Estimation of yields of hydroxyl radicals in water under various energy heavy ions. Radiat Res 2009;171:254–263.
  • Taguchi M, Kojima T. Yield of OH radicals in water under heavy ion irradiation. Dependence on mass, specific energy and elapsed time. Nucl Sci Tech 2007;18:35–38.
  • Baldacchino G, Vigneron G, Renault JP, Le Caer S, Pin S, Mialocq JC, . Hydroxyl radical yields in the tracks of high energy 13C6 + and 36Ar18 + ions in liquid water. Nucl Instrum Methods Phys Res, Sect B 2006;245:288–291.
  • Yamashita S, Katsumura Y, Lin M, Muroya Y, Maeyama T, Murakami T. Water radiolysis with heavy ions of energies up to 28 GeV-2: extension of primary yield measurements to very high LET values. Radiat Phys Chem 2008;77:1224–1229.
  • Yamashita S, Katsumura Y, Lin M, Muroya Y, Miyazakia T, Murakami T. Water radiolysis with heavy ions of energies up to 28 GeV. 1. Measurements of primary g values as track segment yields. Radiat Phys Chem 2008;77:439–446.
  • Boulton S, Anderson A, Swalwell H, Henderson JR, Manning P, Birch-Machin MA. Implications of using the fluorescent probes, dihydrorhodamine 123 and 2′,7′-dichlorodihydrofluorescein diacetate, for the detection of UVA-induced reactive oxygen species. Free Radical Res 2011;45:115–122.
  • Prochazkova J, Kubala L, Kotasova H, Gudernova I, Sramkova Z, Pekarova M, . ABC transporters affect the detection of intracellular oxidants by fluorescent probes. Free Radical Res 2011;45:779–787.
  • Baldacchino G, Maeyama T, Yamashita S, Taguchi M, Kimura A, Katsumura Y, Murakami T. Determination of the time-dependent OH-yield by using fluorescent probe. application to heavy ion irradiation. Chem Phys Lett 2009;468:275–279.
  • Louit G, Hanedanian M, Taran F, Coffigny H, Renault JP, Pin S. Determination of hydroxyl rate constants by a high-throughput fluorimetric assay: towards a unified reactivity scale for antioxidants. Analyst 2009;134:250–255.
  • Tornberg K, Olsson S. Detection of hydroxyl radicals produced by wood-decomposing fungi. FEMS Microbiol Ecol 2002;40:13–20.
  • Collins AK, Makrigiorgos GM, Svensson GK. Coumarin chemical dosimeter for radiation therapy. Med Phys 1994;21:1741–1747.
  • Iakovlev A, Broberg A, Stenlid J. Fungal modification of the hydroxyl radical detector coumarin-3-carboxylic acid. FEMS Microbiol Ecol 2003;46:197–202.
  • Louit G, Foley S, Cabillic J, Coffigny H, Taran F, Valleix A, . The reaction of coumarin with the OH radical revisited: hydroxylation product analysis determined by fluorescence and chromatography. Radiat Phys Chem 2005;72:119–124.
  • Newton GL, Milligan JR. Fluorescence detection of hydroxyl radicals. Radiat Phys Chem 2006;75:473–478.
  • Maeyama T, Yamashita S, Baldacchino G, Taguchi M, Kimura A, Murakami T, Katsumura Y. Production of a fluorescent probe in ion-beam radiolysis of aqueous coumarin-3-carboxylic acid solution. 1: beam quality and concentration dependences. Radiat Phys Chem 2011;80:535–539.
  • Maeyama T, Yamashita S, Taguchi M, Baldacchino G, Sihver L, Murakami T, Katsumura Y. Production of a fluorescence probe in ion-beam radiolysis of aqueous coumarin-3- carboxylic acid solution-2: effects of nuclear fragmentation and its simulation with PHITS. Radiat Phys Chem 2011;80: 1352–1357.
  • Singh TS, Rao BSM, Mohan H, Mittal JP. A Pulse radiolysis study of coumarin and its derivatives. J Photochem Photobiol, A 2002;153:163–171.
  • Fu H, Lin M, Katsumura Y, Yokoya A, Hata K, Muroya Y, . Protective effects of silybin and analogues against X-ray dadiation-induced damage. Acta Bioch Biophys 2010;42: 489–495.
  • Fu H, Lin M, Muroya Y, Hata K, Katsumura Y, Yokoya A, . Free radical scavenging reactions and antioxidant activities of silybin: mechanistic aspects and pulse radiolytic studies. Free Radical Res 2009;43:887–897.
  • Hata K, Lin M, Katsumura Y, Muroya Y, Fu H, Yamashita S, Nakagawa H. Pulse radiolysis study on free radical scavenger edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one). 2: A comparative study on edaravone derivatives. J Radiat Res 2011;52:15–23.
  • Stasko A, Brezova V, Zalibera M, Biskupic S, Ondrias K. Electron transfer: A primary step in the reactions of sodium hydrosulphide, an H2S/HS − donor. Free Radical Res 2009;43:581–593.
  • Buxton GV, Stuart CR. Re-evaluation of the thiocyanate dosimeter for pulse-radiolysis. J Chem Soc Faraday T 1995; 91:279–281.
  • Klassen NV, Shortt KR, Seuntjens J, Ross CK. Fricke dosimetry: the difference between G(Fe3+ ) for Co-60 gamma-rays and high-energy X-rays. Phys Med Biol 1999;44:1609–1624.
  • Manevich Y, Held KD, Biaglow JE. Coumarin-3-carboxylic acid as a detector for hydroxyl radicals generated chemically and by gamma radiation. Radiat Res 1997;148:580–591.
  • Kuppermann A. Diffusion kinetics in radiation chemistry: an assessment. Technical, Information Center, Office of Information Services, U.S. Atomic Energy Commission; 1974. 155p.
  • Elliot AJ. Rate constants and G-values for the simulation of the radiolysis of light water over the range 0–300°C (AECL-11073/COG-94-167). Ontario: AECL; 1994.
  • Buxton GV, Greenstock CL, Helman WP, Ross AB. Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (.OH/.O − ) in aqueous-solution. J Phys Chem Ref Data 1988;17:513–886.
  • Louit G. Dévelopment de sondes fluorescentes du radical hydroxyle: caractérisation et modélisation de la réactivité de molécules dérivées de la coumarine avec HO• [PhD Thesis]. Paris: Université de Paris 11, Orsay; 2005.
  • Fang XW, Mark G, vonSonntag C. OH radical formation by ultrasound in aqueous solutions .1. The chemistry underlying the terephthalate dosimeter. Ultrason Sonochem 1996;3: 57–63.
  • Sun WC, Gee KR, Haugland RP. Synthesis of novel fluorinated coumarins: excellent UV-light excitable fluorescent dyes. Bioorg Med Chem Lett 1998;8:3107–3110.
  • Muroya Y, Lin MZ, Wu GZ, Iijima H, Yoshi K, Ueda T, . A re-evaluation of the initial yield of the hydrated electron in the picosecond time range. Radiat Phys Chem 2005;72: 169–172.
  • Muroya Y, Meesungnoen J, Jay-Gerin JP, Filali-Mouhim A, Goulet T, Katsumura Y, Mankhetkorn S. Radiolysis of liquid water: an attempt to reconcile Monte-Carlo calculations with new experimental hydrated electron yield data at early times. Can J Chem 2002;80:1367–1374.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.