176
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Development of pyridine-containing macrocyclic copper(II) complexes: potential role in the redox modulation of oxaliplatin toxicity in human breast cells

, , , , , , & show all
Pages 1157-1166 | Received 12 Jan 2012, Accepted 17 May 2012, Published online: 20 Jun 2012

References

  • Duncan C, White AR. Copper complexes as therapeutic agents. Metallomics 2012;4:127–138.
  • Oberley LW. Mechanism of the tumor suppressive effect of MnSOD overexpression. Biomed Pharmacother 2005;59: 143–148.
  • Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. New York: Oxford University Press; 2007.
  • Batinic-Haberle I, Rebouças JS, Spasojević I. Superoxide dismutase mimics: chemistry, pharmacology and therapeutic potential. Antiox Redox Signal 2010;13:877–918.
  • Salvemini D, Riley DP, Cuzzocrea S. SOD mimetics are coming of age. Nat Rev Drug Discov 2002;1:367–374.
  • Matés JM. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 2000;153:83–104.
  • Riley DP. Functional mimics of superoxide dismutase enzymes as therapeutic agents. Chem Rev 1999;99:2573–2588.
  • Fernandes AS, Gaspar J, Cabral MF, Caneiras C, Guedes R, Rueff J, . Macrocyclic copper(II) complexes: superoxide scavenging activity, structural studies and cytotoxicity evaluation. J Inorg Biochem 2007;101:849–858.
  • Bienvenue E, Choua S, Lobo-Recio M-A, Marzin C, Pacheco P, Seta P, . Structure and superoxide dismutase activity of Ru(II), Cu(II), and Mn(II) macrocyclic complexes. J Inorg Biochem 1995;57:157–168.
  • Kimura E, Sakonaka A, Nakamoto M. Superoxide dismutase activity of macrocyclic polyamine complexes. Biochim Biophys Acta 1981;678:172–179.
  • Kimura E, Yatsunami A, Watanabe A, Machida R, Koike T, Fujioka H, . Further studies on superoxide dismutase activities of macrocyclic polyamine complexes of copper(II). Biochim Biophys Acta 1983;745:37–43.
  • Langan AR, Khan MA, Yeung IW, Van Dyk J, Hill RP. Partial volume rat lung irradiation: the protective/mitigating effects of Eukarion-189, a superoxide dismutase-catalase mimetic. Radiother Oncol 2006;79:231–238.
  • Oury TD, Thakker K, Menache M, Chang LY, Crapo JD, Day BJ. Attenuation of bleomycin-induced pulmonary fibrosis by a catalytic antioxidant metalloporphyrin. Am J Respir Cell Mol Biol 2001;25:164–169.
  • Kaiserova H, den Hartog GJ, Simunek T, Schroterova L, Kvasnickova E, Bast A. Iron is not involved in oxidative stress-mediated cytotoxicity of doxorubicin and bleomycin. Br J Pharmacol 2006;149:920–930.
  • Konorev EA, Kennedy MC, Kalyanaraman B. Cell-permeable superoxide dismutase and glutathione peroxidase mimetics afford superior protection against doxorubicin-induced cardiotoxicity: the role of reactive oxygen and nitrogen intermediates. Arch Biochem Biophys 1999;368:421–428.
  • Laurent A, Nicco C, Chereau C, Goulvestre C, Alexandre J, Alves A, . Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res 2005;65:948–956.
  • Francisco DC, Peddi P, Hair JM, Flood BA, Cecil AM, Kalogerinis PT, . Induction and processing of complex DNA damage in human breast cancer cells MCF-7 and nonmalignant MCF-10A cells. Free Radic Biol Med 2008;44:558–569.
  • Li JJ, Oberley LW, St Clair DK, Ridnour LA, Oberley TD. Phenotypic changes induced in human breast cancer cells by overexpression of manganese-containing superoxide dismutase. Oncogene 1995;10:1989–2000.
  • Weydert CJ, Waugh TA, Ritchie JM, Iyer KS, Smith JL, Li L, . Overexpression of manganese or copper-zinc superoxide dismutase inhibits breast cancer growth. Free Radic Biol Med 2006;41:226–237.
  • Nicco C, Laurent A, Chereau C, Weill B, Batteux F. Differential modulation of normal and tumor cell proliferation by reactive oxygen species. Biomed Pharmacother 2005;59:169–174.
  • Alexandre J, Nicco C, Chereau C, Laurent A, Weill B, Goldwasser F, . Improvement of the therapeutic index of anticancer drugs by the superoxide dismutase mimic mangafodipir. J Natl Cancer Inst 2006;98:236–244.
  • Keele BB Jr, McCord JM, Fridovich I. Further characterization of bovine superoxide dismutase and its isolation from bovine heart. J Biol Chem 1971;246:2875–2880.
  • Costa J, Delgado R. Metal complexes of macrocyclic ligands containing pyridine. Inorg Chem 1993;32:5257–5265.
  • Costa J, Delgado R, Drew MGB, Félix V. Design of selective macrocyclic ligands for the divalent first-row transition-metal ions. J Chem Soc Dalton Trans 1998:1063–1071.
  • Fernandes AS, Cabral MF, Costa J, Castro M, Delgado R, Drew MGB, . Two macrocyclic pentaaza compounds containing pyridine evaluated as novel chelating agents in copper(II) and nickel(II) overload. J Inorg Biochem 2011;105:410–419.
  • Schwarzenbach G, Flaschka HA. Complexometric titrations. London: Methuen and Co; 1969.
  • Delagrange S, Delgado R, Nepveu F. Mn2+, Co2+, Cu2+ and Zn2+ complexes with two macrocyclic ligands bearing l- lactate-like functions: potentiometric studies and evaluation of superoxide-scavenging properties of the Mn2+ complex. J Inorg Biochem 2000;81:65–71.
  • Alderighi L, Gans P, Ienco A, Peters D, Sabatini A, Vacca A. Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord Chem Rev 1999;184: 311–318.
  • Pettit LD, Powell KJ. IUPAC Stability constants database. UK: Academic Software, Sourby Old Farm, Timble, Ottley, Yorks.; 2004.
  • Smith RM, Martell AE, Motekaitis RJ. Nist Critical stability constants of metal complexes database. Gaithersburg: U.S. Department of Commerce; 1998.
  • Xavier S, Yamada K, Samuni AM, Samuni A, DeGraff W, Krishna MC, . Differential protection by nitroxides and hydroxylamines to radiation-induced and metal ion-catalyzed oxidative damage. Biochim Biophys Acta 2002;1573: 109–120.
  • Mitchell JB. Potential applicability of nonclonogenic measurements to clinical oncology. Radiat Res 1988;114:401–414.
  • Fernandes AS, Gaspar J, Cabral MF, Rueff J, Castro M, Batinic-Haberle I, . Protective role of ortho-substituted Mn(III) N-alkylpyridylporphyrins against the oxidative injury induced by tert-butylhydroperoxide. Free Radic Res 2010;44: 430–440.
  • Fernandes AS, Serejo J, Gaspar J, Cabral F, Bettencourt AF, Rueff J, . Oxidative injury in V79 Chinese hamster cells: protective role of the superoxide dismutase mimetic MnTM-4-PyP. Cell Biol Toxicol 2010;26:91–101.
  • Pogni R, Baratto MC, Busi E, Basosi R. EPR and O2.- scavenger activity: Cu(II)-peptide complexes as superoxide dismutase models. J Inorg Biochem 1999;73:157–165.
  • Costanzo LL, De Guidi G, Giuffrida S, Rizzarelli E, Vecchio G. Determination of superoxide dismutase-like activity of copper(II) complexes. Relevance of the speciation for the correct interpretation of in vitro O2- scavenger activity. J Inorg Biochem 1993;50:273–281.
  • Costamagna J, Ferraudi G, Matsuhiro B, Campos-Vallette M, Canales J, Villagrán M, . Complexes of macrocycles with pendant arms as models for biological molecules. Coord Chem Rev 2000;196:125–164.
  • Gonzalez-Alvarez M, Alzuet G, Borras J, Castillo Agudo L, Montejo-Bernardo JM, Garcia-Granda S. Development of novel copper(II) complexes of benzothiazole-N-sulfonamides as protective agents against superoxide anion. Crystal structures of [Cu(N-2-(4-methylbenzothiazole)benzenesulfonamidate)(2)(py)(2)] and [Cu(N-2-(6-nitrobenzothiazole)naphthalenesulfonamidate)(2)(py)(2)]. J Biol Inorg Chem 2003;8:112–120.
  • Lindoy LF. Tailoring macrocycles for metal ion binding. Pure Appl Chem 1997;69:2179–2186.
  • Autzen S, Korth H-G, Boese R, de Groot H, Sustmann R. Studies of pyridinyl-containing 14-membered macrocyclic copper(II) complexes. Eur J Inorg Chem 2003:1401–1410.
  • Kang S-G, Kim M-S, Choi J-S, Cho MH. Synthesis, characterization and properties of new fully N-alkylated 14-membered tetraaza macrocycles and their copper(II) complexes. Polyhedron 1995;14:781–786.
  • Costa J, Delgado R, Drew MGB, Félix V, Saint-Maurice A. A new redox-responsive 14-membered tetraazamacrocycle with ferrocenylmethyl arms as receptor for sensing transition-metal ions. J Chem Soc Dalton Trans 2000:1907–1916.
  • Müller J, Schübl D, Maichle-Mössmer C, Strähle J, Weser U. Structure-function correlation of Cu(II)-and Cu(I)-di-Schiff-base complexes during the catalysis of superoxide dismutation J Inorg Biochem 1999;75:63–69.
  • Costa J, Delgado R, Drew MGB, Félix V, Henriques RT, Waerenborgh JC. Structural characterization of cobalt(III), nickel(II), copper(II) and iron(III) complexes of tetraazamacrocycles with N-carboxymethyl arms. J Chem Soc Dalton Trans 1999: 3253–3265.
  • Riley DP, Henke SL, Lennon PJ, Weiss RH, Neumann WL, Rivers WJ, . Synthesis, characterization, and stability of manganese(II) C-substituted 1,4,7,10,13-pentaazacyclopentadecane complexes exhibiting superoxide dismutase activity. Inorg Chem 1996;35:5213–5231.
  • Drahos B, Kotek J, Hermann P, Lukes I, Toth E. Mn(2+) complexes with pyridine-containing 15-membered macrocycles: thermodynamic, kinetic, crystallographic, and (1)H/(17)O relaxation studies. Inorg Chem 2010;49:3224–3238.
  • Durackova Z, Mendiola MA, Sevilla MT, Valent A. Thiohydrazone copper(II) complexes. The relationship between redox properties and superoxide dismutase mimetic activity. Bioelectrochem Bioenerg 1999;48:109–116.
  • Szilagyi I, Labadi I, Hernadi K, Palinko I, Nagy NV, Korecz L, . Speciation study of an imidazolate-bridged copper(II)–zinc(II) complex in aqueous solution. J Inorg Biochem 2005;99:1619–1629.
  • Patel RN, Gundla VLN, Patel DK. Synthesis, structure and properties of some copper(II) complexes containing an ONO donor Schiff base and substituted imidazole ligands. Polyhedron 2008;27:1054–1060.
  • Raman N, Sakthivel A, Jeyamurugan R. Binuclear copper and zinc complexes possessing bio-potential ligands: synthesis, characterization, antimicrobial, SOD mimetic, DNA binding, and cleavage studies. J Coord Chem 2010;63:1080–1096.
  • Decatris MP, Sundar S, O'Byrne KJ. Platinum-based chemotherapy in metastatic breast cancer: current status. Cancer Treat Rev 2004;4:53–81.
  • Kim S, Lee TJ, Park JW, Kwon TK. Overexpression of cFLIPs inhibits oxaliplatin-mediated apoptosis through enhanced XIAP stability and Akt activation in human renal cancer cells. J Cell Biochem 2008;105:971–979.
  • Ohse T, Nagaoka S, Arakawa Y, Kawakami H, Nakamura K. Cell death by reactive oxygen species generated from water-soluble cationic metalloporphyrins as superoxide dismutase mimics. J Inorg Biochem 2001;85:201–208.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.