291
Views
6
CrossRef citations to date
0
Altmetric
Research Article

FLT3-driven redox-modulation of Ezrin regulates leukaemic cell migration

&
Pages 20-34 | Received 18 Jul 2012, Accepted 19 Sep 2012, Published online: 16 Oct 2012

References

  • Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood 2002;100:1532–1542.
  • Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K, . Internal tandem duplication of the FLT3 gene found in acute myeloid leukemia. Leukemia 1996;10: 1911–1918.
  • Rosenbauer F, Wagner K, Kutok JL, Iwasaki H, Le Beau MM, Okuno Y, . Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet 2004;36:624–630.
  • Radomska HS, Basseres DS, Zheng R, Zhang P, Dayaram T, Yamamoto Y, . Block of C/EBP alpha function by phosphorylation in acute myeloid leukemia with FLT3 activating mutations. J Exp Med 2006;203:371–381.
  • Zheng R, Small D. Mutant FLT3 signaling contributes to a block in myeloid differentiation. Leuk Lymphoma 2005; 46:1679–1687.
  • Takahashi S. Downstream molecular pathways of FLT3 in the pathogenesis of acute myeloid leukemia: biology and therapeutic implications. J Hematol Oncol 2011;4:1–13.
  • Sallmyr A, Fan J, Rassool FV. Genomic instability in myeloid malignancies: increased reactive oxygen species (ROS), DNA double strand breaks (DSBs) and error-prone repair. Cancer Lett 2008;270:1–9.
  • Naughton R, Quiney C, Turner SD, Cotter TG. Bcr-Abl-mediated redox regulation of the PI3K/AKT pathway. Leukemia 2009;23:1432–1440.
  • Funato Y, Miki H. Nucleoredoxin, a novel thioredoxin family member involved in cell growth and differentiation. Antioxid Redox Sign 2007;9:1035–1057.
  • Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE, . FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 2007;128:325–339.
  • Gianni D, Bohl B, Courtneidge SA, Bokoch GM. The involvement of the tyrosine kinase c-Src in the regulation of reactive oxygen species generation mediated by NADPH oxidase-1. Mol Biol Cell 2008;19:2984–2994.
  • Diaz BA, Shani G, Pass I, Anderson D, Quintavalle M, Courtneidge SA. Tks5-dependent, Nox-mediated generation of reactive oxygen species is necessary for invadopodia formation. Sci Signal 2009;2:ra53.
  • Binker MG, Binker-Cosen AA, Richards D, Oliver B, Cosen-Binker LI. EGF promotes invasion by PANC-1 cells through Rac1/ROS-dependent secretion and activation of MMP-2. Biochem Biophys Res Commun 2009;379:445–450.
  • Ferraro D, Corso S, Fasano E, Panieri E, Santangelo R, Borrello S, . Pro-metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS). Oncogene 2006;25: 3689–3698.
  • Weinberg F, Chandel NS. Reactive oxygen species-dependent signaling regulates cancer. Cell Mol Life Sci 2009;66: 3663–3673.
  • Mitsushita J, Lambeth JD, Kamata T. The superoxide-generating oxidase Nox1 is functionally required for Ras oncogene transformation. Cancer Res 2004;64:3580–3585.
  • Wu WS. The signaling mechanism of ROS in tumor progression. Cancer Metastasis Rev 2006;25:695–705.
  • Hole PS, Darley RL, Tonks A. Do reactive oxygen species play a role in myeloid leukemias?Blood 2011;117:5816–5826.
  • Battisti V, Maders LDK, Bagatini MD, Santos KF, Spanevello RM, Maldonado PA, . Measurement of oxidative stress and antioxidant status in acute lymphoblastic leukemia patients. Clin Biochem 2008;41:511–518.
  • Farquhar M, Bowen D. Oxidative stress and the myelodysplastic syndromes. Int J Hematol 2003;77:342–350.
  • Sallmyr A, Fan J, Datta K, Kim KT, Grosu D, Shapiro P, . Internal tandem duplication of FLT3 (FLT3/ITD) induces increased ROS production, DNA damage, and misrepair: implications for poor prognosis in AML. Blood 2008;111:3173–3182.
  • Reddy MM, Fernandes MS, Salgia R, Levine RL, Griffin JD, Sattler M. NADPH oxidases regulate cell growth and migration in myeloid cells transformed by oncogenic tyrosine kinases. Leukemia 2011;25:281–289.
  • Bedard K, Krause KH. The Nox family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007;87:245–313.
  • Cheng G, Cao Z, Xu X, van Meir EG, Lambeth JD. Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 2001;269:131–140.
  • Sharma P, Chakraborty R, Wang L, Min B, Tremblay ML, Kawahara T, . Redox regulation of interleukin-4 signalling. Immunity 2008;29:551–564.
  • Denu JM, Tanner KG. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 1998;37:5633–5642.
  • Lou YW, Chen YY, Hsu SF, Chen RK, Lee CL, Khoo KH, . Redox regulation of the protein tyrosine phosphatase PTP1B in cancer cells. FEBS 2008;275:69–88.
  • Giannoni E, Buricchi F, Raugei G, Ramponi G, Chiarugi P. Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol Cell Biol 2005;25:6391–6403.
  • Zhu P, Tan MJ, Huang R-L, Tan CK, Chong HC, Pal M, . Angiopoietin-like 4 protein elevates the prosurvival intracellular O2(-):H2O2ratio and confers anoikis resistance to tumors. Cancer cell 2011;19:401–415.
  • Chiarugi P. Minireview Src redox regulation: there is more than meets the eye. Mol Cells 2008;26:329–337.
  • Srivastava J, Elliott BE, Louvard D, Arpin M. Src-dependent Ezrin phosphorylation in adhesion- mediated signaling. Mol Biol Cell 2005;16:1481–1490.
  • Bretscher A, Edwards K, Fehon RG. ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 2002;3: 586–599.
  • Heiska L, Melikova M, Zhao F, Saotome I, McClatchey AI, Carpen O. Ezrin is key regulator of Src-induced malignant phenotype in three-dimensional environment. Oncogene 2011:1–10.
  • Takeda H, Nagafuchi A, Yonemura S, Tsukita S, Behrens J, Birchmeier W. V-src kinase shifts the cadherin-based cell adhesion from the strong to the weak state and beta catenin is not required for the shift. J Cell Biol 1995;131:1839–1847.
  • Brambilla D, Fais S. The Janus-faced role of ezrin in “linking” cells to either normal or metastatic phenotype. Int J Cancer 2009;125:2239–2245.
  • Quentmeier H, Reinhardt J, Zaborski M, Drexler HG. FLT3 mutations in acute myeloid leukemia cell lines. Leukemia 2003;17:120–124.
  • Levis M, Pham R, Smith BD, Small D. In vitro studies of a FLT3 inhibitor combined with chemotherapy: sequence of administration is important to achieve synergistic cytotoxic effects. Blood 2004;104:1145–1150.
  • Zhou B, Leng J, Hu M, Zhang L, Wang Z, Liu D, . Ezrin is a key molecule in the metastasis of MOLT4 cells induced by CCL25/CCR9. Leuk Res 2010;34:769–776.
  • Krebs EG. The growth of research on protein phosphorylation. Trends Biochem Sci 1994;19:439–444.
  • Cooper JA, Sefton BM, Hunter T. Detection and quantification of phosphotyrosine in proteins. Methods Enzymol 1983;99; 387–402.
  • Chou HC, Chen YW, Lee TR, Wu FS, Chan HT, Lyu PC, . Proteomics study of oxidative stress and Src kinase inhibition in H9C2 cardiomyocytes: a cell model of heart ischemia- reperfusion injury and treatment. Free Radic Biol Med 2010;49:96–108.
  • Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature 2001;411:355–365.
  • Monni R, Haddaoui L, Naba A, Gallais I, Arpin M, Mayeux P, . Ezrin is a target for oncogenic Kit mutants in murine erythroleukemia. Blood 2008;111:3163–3172.
  • Fazioli F, Wong WT, Ullrich SJ, Sakaguchi K, Appella E, Di Fiore PP. The ezrin-like family of tyrosine kinase substrates: receptor-specific pattern of tyrosine phosphorylation and relationship to malignant transformation. Oncogene 1993; 8:1335–1345.
  • Crepaldi T, Gautreau A, Comoglio PM, Louvard D, Arpin M. Ezrin is an effector of hepatocyte growth factor-mediated migration and morphogenesis in epithelial cells. J Cell Biol 1997;138:423–434.
  • Simons PC, Pietromonaco SF, Reczek D, Bretscher A, Elias L. C-terminal threonine phosphorylation activates ERM proteins to link the cell's cortical lipid bilayer to the cytoskeleton. Biochem Biophys Res Commun 1998;253:561–565.
  • Chen J, Doctor RB, Mandel LJ. Cytoskeletal dissociation of ezrin during renal anoxia: role in microvillar injury. Am J Physiol 1994;267:C784–;C795.
  • Kondo T, Takeuchi K, Doi Y, Yonemura S, Nagata S, Tsukita S. ERM (ezrin/radixin/moesin)-based molecular mechanism of microvillar breakdown at an early stage of apoptosis. J Cell Biol 1997;139:749–758.
  • Matsui T. Rho-Kinase Phosphorylates COOH-terminal threonines of Ezrin/Radixin/Moesin (ERM) proteins and regulates their head-to-tail association. J Cell Biol 1998;140:647–657.
  • Hayashi K, Yonemura S, Matsui T, Tsukita S. Immunofluorescence detection of ezrin/radixin/moesin (ERM) proteins with their carboxyl-terminal threonine phosphorylated in cultured cells and tissues. J Cell Sci 1999;112 1149–1158.
  • Berryman M, Gary R, Bretscher A. Ezrin oligomers are major cytoskeletal components of placental microvilli: a proposal for their involvement in cortical morphogenesis. J Cell Biol 1995;131:1231–1242.
  • Gautreau A, Poullet P, Louvard D, Arpin M. Ezrin, a plasma membrane-microfilament linker, signals cell survival through the phosphatidylinositol 3-kinase/Akt pathway. PNAS USA 1999;96:7300–7305.
  • Krieg J, Hunter T. Identification of the two major epidermal growth factor-induced tyrosine phosphorylation sites in the microvillar core protein ezrin. J Bio Chem 1992;267: 19258–19265.
  • Woolley JF, Naughton R, Stanicka J, Gough D, Bhatt L, Dickinson BC, . H2O2production downstream of FLT3 is mediated by p22phox in the endoplasmic reticulum and is required for STAT5 signalling. PLoS ONE, 2012;7: e34050.
  • Fischer T, Stone RM, Deangelo DJ, Galinsky I, Estey E, Lanza C, . Phase IIB trial of oral Midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi- targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol 2010;28:4339–4345.
  • Weisberg E, Boulton C, Kelly LM, Manley P, Fabbro D, Meyer T, . Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell 2002;1:433–443.
  • Kindler T, Lipka DB, Fischer T. FLT3 as a therapeutic target in AML: still challenging after all these years. Blood 2010; 116:5089–5102.
  • Giannoni E, Taddei ML, Chiarugi P. Src redox regulation: again in the front line. Free Radic Biol Med 2010;49: 516–527.
  • Turunen O, Winqvist R, Pakkanen R, Grzeschik KH, Wahlstrom T, Vaheri A. Cytovillin, a microvillar Mr 75,000 protein. cDNA sequence, prokaryotic expression, and chromosomal localization.J Bio Chem 1989;264:16727–16732.
  • Fehon RG, McClatchey AI, Bretscher A. Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol 2010;11:276–287.
  • Pakkanen R, Hedman K, Turunen O, Wahlstrom T, Vaheri A. Microvillus-specific Mr 75,000 plasma membrane protein of human choriocarcinoma cells. J Histochem 1987;35:806–816.
  • Bretscher A. Purification of an 80,000-dalton protein that is a component of the isolated microvillus cytoskeleton, and its localization in nonmuscle cells. J Cell Biol 1983;97: 425–432.
  • Pakkanen R, von Bonsdorff CH, Turunen O, Wahlstrom T, Vaheri A. Redistribution of Mr 75,000 plasma membrane protein, cytovillin, into newly formed microvilli in herpes simplex and Semliki Forest virus infected human embryonal fibroblasts. Eur J Cell Biol 1988;46:435–443.
  • Auvinen E, Kivi N, Vaheri A. Regulation of ezrin localization by Rac1 and PIPK in human epithelial cells. Exp Cell Res 2007;313:824–833.
  • Barret C, Roy C, Montcourrier P, Mangeat P, Niggli V. Mutagenesis of the phosphatidylinositol 4,5-bisphosphate (PIP(2)) binding site in the NH(2)-terminal domain of ezrin correlates with its altered cellular distribution. J Cell Biol 2000;151:1067–1080.
  • Melendez-vasquez CV, Rios JC, Zanazzi G, Lambert S, Bretscher A, Salzer JL. Nodes of Ranvier form in association with Schwann cell processes. PNAS 2000;98:1235–1240.
  • Batchelor CL, Woodward AM, Crouch DH. Nuclear ERM (ezrin, radixin, moesin) proteins: regulation by cell density and nuclear import. Exp Cell Res 2004;296:208–222.
  • Martin M, Roy C, Montcourrier P, Sahuquet A, Mangeat P. Three determinants in ezrin are responsible for cell extension activity. Mol Biol Cell 1997;8:1543–1557.
  • Bretscher A. Rapid phosphorylation and re-organization of ezrin and spectrin accompany morphological changes induced in A-431 cells by epidermal growth factor. J Cell Biol 1989;108:921–930.
  • Fukuda S, Broxmeyer HE, Pelus LM. Flt3 ligand and the Flt3 receptor regulate hematopoietic cell migration by modulating the SDF-1alpha(CXCL12)/CXCR4 axis. Blood 2005;105: 3117–3126.
  • Stefanidakis M, Karjalainen K, Jaalouk DE, Gahmberg CG, O’Brien S, Pasqualini R, . Role of leukemia cell invadosome in extramedullary infiltration. Blood 2009;114:3008–3017.
  • Fukuda S, Pelus LM. Internal tandem duplication of Flt3 modulates chemotaxis and survival of hematopoietic cells by SDF1alpha but negatively regulates marrow homing in vivo. Exp Hematol 2006;34:1041–1051.
  • Weaver AM. Regulation of cancer invasion by reactive oxygen species and Tks family scaffold proteins. Sci Signal 2010;2:pe56.
  • Buschman MD, Bromann PA, Cejudo-martin P, Wen F, Pass I, Courtneidge SA. The novel adaptor protein Tks4 (SH3PXD2B) is required for functional podosome formation. Mol Biol Cell 2009;20:1302–1311.
  • Diaz B, Shani G, Pass I, Anderson D, Quintavalle M, Courtneidge SA. Tks5-dependent, nox-mediated generation of reactive oxygen species is necessary for invadopodia formation. Sci Signal 2009;2:ra53.
  • Gianni D, Diaz B, Taulet N, Fowler B, Courtneidge SA, Bokoch GM. Novel p47(phox)-related organizers regulate localized NADPH oxidase 1 (Nox1) activity. Sci Signal 2009;2:ra54.
  • Gianni D, Taulet N, DerMardirossian C, Bokoch GM. cSrc-mediated phosphorylation of NoxA1 and Tks4 induces the reactive oxygen species (ROS)-dependent formation of functional invadopodia in human colon cancer cells. Mol Biol Cell 2011;21:4287–4298.
  • Kim SY, Lee JG, Cho WS, Cho KH, Sakong J, Kim JR, . Role of NADPH oxidase-2 in lipopolysaccharide-induced matrix metalloproteinase expression and cell migration. Immunol Cell biol 2010;88:197–204.
  • Fais S. A role for ezrin in a neglected metastatic tumor function. Trends Mol Med 2004;10:249–250.
  • Mori T, Kitano K, Terawaki S, Maesaki R, Fukami Y, Hakoshima T. Structural basis for CD44 recognition by ERM proteins. J Biol Chem 2008;283:29602–29612.
  • Maniti O, Khalifat N, Goggia K, Dalonneau F, Guerin C, Blanchoin L, . Binding of moesin and ezrin to membranes containing phosphatidylinositol (4,5) bisphosphate: A comparative study of the affinity constants and conformational changes. Biochim Biophys Acta 2012;1818: 2839–2849.
  • Barreiro O, Yanez-Mo M, Serrador JM, Montoya MC, Vicente-Manzanares M, Tejedor R, . Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol 2002;157:1233–1245.
  • LaLonde DP, Garbett D, Bretscher A. A regulated complex of the scaffolding proteins PDZK1 and EBP50 with ezrin contribute to microvillar organization. Mol Biol Cell 2010;21: 1519–1529.
  • Saleh HS, Merkel U, Geissler KJ, Sperka T, Sechi A, Breithaupt C, . Properties of an ezrin mutant defective in F-actin binding. J Mol Biol 2009;385:1015–1031.
  • Arpin M, Chirivino D, Naba A, Zwaenepoel I. Emerging role for ERM proteins in cell adhesion and migration. Cell Adh Migr 2011;5:199–206.
  • Gary R, Bretscher A. Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site. Mol Biol Cell 1995;6:1061–1075.
  • Bretscher A, Edwards K, Fehon RG. ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 2002;3: 586–599.
  • Ng T, Parsons M, Hughes WE, Monypenny J, Zicha D, Gautreau A, . Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility. EMBO J 2001;20:2723–2741.
  • Heiska L, Carpen O. Src phosphorylates ezrin at tyrosine 477 and induces a phosphospecific association between ezrin and a kelch-repeat protein family member. J Bio Chem 2005;280: 10244–10252.
  • Mak H, Naba A, Varma S, Schick C, Day A, SenGupta SK, . Ezrin phosphorylation on tyrosine 477 regulates invasion and metastasis of breast cancer cells. BMC Cancer 2012;12:82.
  • Aplin AE, Juliano RL. Regulation of nucleocytoplasmic trafficking by cell adhesion receptors and the cytoskeleton. J Cell Biol 2001;155:187–191.
  • Aplin AE. Cell adhesion molecule regulation of nucleocytoplasmic trafficking. FEBS Lett 2003;534:11–14.
  • Hofmann W, Reichart B, Ewald a, Muller E, Schmitt I, Stauber RH, . Cofactor requirements for nuclear export of Rev response element (RRE)- and constitutive transport element (CTE)-containing retroviral RNAs. An unexpected role for actin. J Cell Biol 2001;152:895–910.
  • Woods AJ, Roberts MS, Choudhary J, Barry ST, Mazaki Y, Sabe H, . Paxillin associates with poly(A)-binding protein 1 at the dense endoplasmic reticulum and the leading edge of migrating cells. J Bio Chem 2002;277:6428–6437.
  • Balda MS, Garrett MD, Matter K. The ZO-1-associated Y-box factor ZONAB regulates epithelial cell proliferation and cell density. J Cell Biol 2003;160:423–432.
  • Chan CB, Liu X, Tang X, Fu H, Ye K. Akt phosphorylation of zyxin mediates its interaction with acinus-S and prevents acinus-triggered chromatin condensation. Cell Death Diff 2007;14:1688–1699.
  • Lallena MJ, Martinez C, Valcarcel J, Correas I. Functional association of nuclear protein 4.1with pre-mRNA splicing factors. J Cell Sci 1998;111:1963–1971.
  • Conboy JG. Structure, function, and molecular genetics of erythroid membrane skeletal protein 4.1in normal and abnormal red blood cells. Sem Hematol 1993;30:58–73.
  • Krauss SW, Larabell CA, Lockett S, Gascard P, Penman S, Mohandas N, . Structural protein 4.1 in the nucleus of human cells: dynamic rearrangements during cell division.J Cell Biol 1997;137:275–289.
  • Rando OJ, Zhao K, Janmey P, Crabtree GR. Phosphatidylinositol-dependent actin filament binding by the SWI/SNF-like BAF chromatin remodeling complex. PNAS U S A 2002;99:2824–2829.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.