170
Views
15
CrossRef citations to date
0
Altmetric
Research Article

Acute renal failure potentiates methylmalonate-induced oxidative stress in brain and kidney of rats

, , , , , , , , & show all
Pages 233-240 | Received 19 Oct 2012, Accepted 24 Dec 2012, Published online: 18 Jan 2013

References

  • Deodato F, Boenzi S, Santorelli FM, Dionisi-Vici C. Methylmalonic and propionic aciduria. Am J Med Genet 2006;15:104–112.
  • Fenton WA, Gravel RA, Rosenblatt DS. Disorders of propionate and methylmalonate metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds.). The metabolic and molecular bases of inherited disease. New York: Mcgraw-Hill; 2001. pp. 2165–2193.
  • Zwickler T, Haege G, Riderer A, Hörster F, Hoffmann GF, Burgard P, Kölker S. Metabolic decompensation in methylmalonic aciduria: which biochemical parameters are discriminative?J Inherit Metab Dis 2012;5:797–806.
  • Baumgartner ER, Viardot C, and 47 colleagues from 39 hospitals from 7 European countries. Long-term follow-up of 77 patients with isolated methylmalonic aciduria. J Inherit Metab Dis. 1995;18:138–142.
  • Tu WJ. Methylmalonic acidemia in mainland China. Ann Nutri Metab 2011;58:281.
  • Brusque AM, Borba Rosa R, Schuck PF, Dalcin KB, Ribeiro CA, Silva CG, . Inhibition of the mitochondrial respiratory chain complex activities in rat cerebral cortex by methylmalonic acid. Neurochem Int 2002;40:593–601.
  • Schuck PF, Rosa RB, Pettenuzzo LF, Sitta A, Wannmacher CM, Wyse AT, Wajner M. Inhibition of mitochondrial creatine kinase activity from rat cerebral cortex by methylmalonic acid. Neurochem Int 2004;45:661–667.
  • Royes LF, Fighera MR, Furian AF, Oliveira MS, Silva LG, Malfatti CR, . Creatine protects against the convulsive behavior and lactate production elicited by the intrastriatal injection of methylmalonate. Neuroscience 2003;118: 1079–1090.
  • Fleck J, Ribeiro MC, Schneider CM, Sinhorin VD, Rubin MA, Mello CF. Intrastriatal malonate administration induces convulsive behaviour in rats. J Inherit Metab Dis 2004;27: 211–219.
  • Pettenuzzo LF, Ferreira GC, Schmidt AL, Dutra-Filho CS, Wyse ATS, Wajner M. Differential inhibitory effects of methylmalonic acid on respiratory chain complex activities in rat tissues. Int J Dev Neurosci 2006;24:45–52.
  • Melo DR, Kowaltowski AJ, Wajner M, Castilho RF. Mitochondrial energy metabolism in neurodegeneration associated with methylmalonic acidemia. J Bioenerg Biomembr 2011;43:39–46.
  • Brusque AM, Rotta LN, Tavares RG, Emanuelli T, Schwarzbold CV, Dutra-Filho CS, . Effects of methylmalonic and propionic acids on glutamate uptake by synaptosomes and synaptic vesicles and on glutamate release by synaptosomes from cerebral cortex of rats. Brain Res 2001;920:194–201.
  • Loureiro SO, de Lima Pelaez SO, Heimfarth L, Souza DO, Wajner M, Pessoa-Pureur R. Propionic and methylmalonic acids increase cAMP levels in slices of cerebral cortex of young rats via adrenergic and glutamatergic mechanisms. Biochimica et Biophysica Acta 2005;174:460–466.
  • Fontella F, Pulronick V, Gassen E, Wannmacher CMD, Klein AB, Wajner M, Dutra-Filho CS. Propionic and L-methylmalonic acids induce oxidative stress in brain of young rats. Neuroreport 2000;28:541–544.
  • Fernandes CG, Borges CG, Seminotti S, Amaral AU, Knebel LA, Eichler P, . Experimental evidence that methylmalonic acid provokes oxidative damage and compromises antioxidant defenses in nerve terminal and striatum of young rats. Cell Mol Neurobiol 2011;31:775–785.
  • Kashtan CE, Abousedira M, Rozen S, Manivel JC, McCann M, Tuchman M. Chronic administration of methylmaloic acid (MMA) to rats causes proteinuria and renal tubular injury (abstract). Pediatr Res 1998;43:309.
  • Dutra JC, Wajner M, Wannmacher CMD, Wannmacher LE, Pires RF, Rosa-Júnior A. Effect of postnatal methylmalonate administration on adult rat behavior. Braz JMed Biol Res 1991;24:595–605.
  • Petronilho F, Constantino L, Souza B, Reinke A, Martins MR, Fraga CM, . Efficacy of the combination of n-acetylcysteine and desferrioxamine in the prevention and treatment of gentamicin-induced acute renal failure in male wistar rats. Nephrol Dial Transplant 2009;24:2077–2082.
  • Evelson P, Travacio M, Repetto M, Escobar, Llesuy S, Lissi EA. Evaluation of total reactive antioxidant potential (trap) of tissue homogenates and their cytosols. Arch Biochem Biophys 2001;388:261–266.
  • Poderoso JJ, Carreras MC, Lisdero C, Riobó N, Schöpfer F, Boveris A. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch Biochem Biophys 1996; 328:85–92.
  • Esterbauer H, Cheeseman KH. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 1990;186:407–421.
  • Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 1994;233:357–363.
  • Aksenov MY, Markesbery WR. Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in alzheimer's disease. Neurosci Lett 2001;302:141–145.
  • Browne RW, Armstrong D. Reduced glutathione and glutathione disulfide. Methods Mol Biol 1998;108:347–352.
  • Lebel CP, Ischiropoulos H, Bondy SC. Evaluation of the probe 2’,7’-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 1992;5:227–231.
  • Aebi H. Catalase in vitro. Methods Enzymol 1984;105: 121–126.
  • Bannister JV, Calabrese L. Assays for SOD. Methods Biochem Anal 1987;32:279–312.
  • Wendel A. Glutathione peroxidase. Methods Enzymol 1981;77:325–332.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951;1936:265–275.
  • Fenton WA, Hack AM, Willard HF, Gertler A, Rosenberg LE. Purification and properties of methylmalonyl coenzyme A mutase from human liver. Arch Biochem Biophys 1982; 214:815–823.
  • Kennedy DG, Cannavan A, Molloy A, O'harte F, Taylor SM, Kennedy S, Blanchflower WJ. Methylmalonyl-coA mutase (EC 5.4.99.2) and methionine synthetase (EC 2.1.1.13) in the tissues of cobalt-vitamin B12 deficient sheep. Br J Nutr 1990;64:721–732.
  • Chandler RJ, Sloan J, Fu H, Tsai M, Stabler S, Allen R, . Metabolic phenotype of methylmalonic acidemia in mice and humans: the role of skeletal muscle. BMC Med Genet 2007;8:64.
  • Nicolaides P, Leonard J, Surtees R. Neurological outcome of methylmalonic acidaemia. Arch Dis Child 1998;78:508–512.
  • D'angio CT, Dillon MJ, Leonard JV. Renal tubular dysfunction in methylmalonic acidaemia. Eur J Pediatr 1991;150: 259–263.
  • Van Calcar SC, Harding CO, Lyne P, Hogan K, Banerjee R, Sollinger H, . Renal transplantation in a patient with methylmalonic acidaemia. J Inherit Metab Dis 1998;21:729–737.
  • Srinivas KW, Want MA, Freigoun OS, Balakrishna N. Methylmalonic acidemia with renal involvement: a case report and review of literature. Saudi JKidney Dis Transpl 2001; 12:49–53.
  • Morath MA, Okun JG, Müller IB, Sauer SW, Hörster F, Hoffmann GF, Kölker S. Neurodegeneration and chronic renal failure in methylmalonicaciduria – a pathophysiological approach. J Inherit Metab Dis 2008;31:35–43.
  • Halperin ML, Schiller CM, Fritz IB. The inhibition by methylmalonic acid of malate transport by the dicarboxylate carrier in rat liver mitochondria.a possible explantation for hypoglycemia in methylmalonic acidúria. J Clin Invest 1971;50: 2276–2282.
  • Toyoshima S, Watanabe F, Saido H, Miyatake K, Nakano Y. Methylmalonic acid inhibits respiration in rat liver mitochondria. J Nutr 1995;125:2846–2850.
  • Mirandola SR, Melo DR, Schuck PF, Ferreira GC, Wajner M, Castilho RF. Methylmalonate inhibits succinate-supported oxygen consumption by interfering with mitochondrial succinate uptake. J Inherit Metab Dis 2008;31:44–54.
  • Perez-Severiano F, Rios C, Segovia J. Striatal oxidative damage parallels the expression of a neurological phenotype in mice transgenic for the mutation of Huntington's disease. Brain Res 2000;862:234–237.
  • Bogdanov MB, Andreassen OA, Dedeoglu A, Ferrante RJ, Beal MF. Increased oxidative damage to DNA in a transgenic mouse of Huntington's disease. J Neurochem 2001;79: 1246–1249.
  • Behl C, Moosmann B. Oxidative nerve cell death in Alzheimer's disease and stroke: antioxidants as neuroprotective compounds. J Biol Chem 2002;383:521–536.
  • Stoy N, Mackay GM, Forrest CM, Christofides J, Egerton M, Stone TW, Darlington LG. Tryptophan metabolism and oxidative stress in patients with Huntington's disease. J Neurochem 2005;93:611–623.
  • Latini A, Scussiato K, Rosa RB, Llesuy S, Bello-Klein A, Dutra-Filho CS, Wajner M. D-2-hydroxyglutaric acid induces oxidative stress in cerebral cortex of young rats. Eur J Neurosci 2003;17:2017–2022.
  • Ribas GS, Pires R, Coelho JC, Rodrigues D, Mescka CP, Vanzin CS, . Oxidative stress in Niemann-Pick type C patients: a protective role of N-butyl-deoxynojirimycin therapy. Int J Dev Neurosci 2012;30:439–444.
  • Marques FO, Hagen ME, Pederzolli CD, Sgaravatti AM, Durigon K, Testa CG, . Glutaric acid induces oxidative stress in brain of young rats. Brain Res 2003;964:153–158.
  • Kölker S, Mayatepek E, Hoffmann GF. White matter disease in cerebral organic acid disorders: clinical implications and suggested pathomechanisms. Neuropediatrics 2002;33: 225–231.
  • Balakumar P, Rohilla A, Thangathirupathi A. Gentamicin-induced nephrotoxicity: do we have a promising therapeutic approach to blunt it?Pharmacol Res 2010;62:179–186.
  • Halliwell B, Gutteridge JMC. Measurement of reactive species. In: Halliwell B, Gutteridge JMC (eds.). Free radicals in biology and medicine. Oxford: Oxford University Press; 2007. pp. 268–340.
  • Levine RL, Williams JA, Stadman ER, Shacter E, Lissi E, Pascual C, Del Castillo MD. Luminol luminescence induced by 2,2’-azo-bis(2-amidinopropane) thermolysis. Free Radic Res Commun 1992;17:299–311.
  • Requejo R, Hurd TR, Costa NJ, Murphy MP. Cysteine residues exposed on protein surfaces are the dominant intramitochondrialthiol and may protect against oxidative damage. FEBS J 2010;227:1465–1480.
  • Davies MJ. Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun 2003;305:761–770.
  • Ischiropoulos H, Gow A, Thom SR, Kooy NW, Royall JA, Crow JP. Detection of reactive nitrogen species using 2, 7-dichlorodihydrofluorescein and dihydrorhodamine 123. Methods Enzymol 1999;301:367–373.
  • Ohashi T, Mizutani A, Murakami A, Kojo S, Ishii T, Taketani S. Rapid oxidation of dichlorodihydrofluorescin with heme and hemoproteins: formation of the fluorescein is independent of the generation of reactive oxygen species. FEBS Lett 2002;511:21–27.
  • Myhre O, Andersen JM, Aarnes H, Fonnum F. Evaluation of the probes 20,70-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmacol 2003;65:1575–1582.
  • Reiter RJ, Tan DX, Manchester LC, Qi W. Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: a review of the evidence. Cell Biochem Biophys 2001; 34:237–256.
  • Anisimov VN, Popovich IG, Zabezhinski MA, Anisimov SV, Vesnushkin GM, Vinogradova IA. Melatonin as antioxidant, geroprotector and anticarcinogen. Biochim Biophys Acta 2006;1757:573–589.
  • Karelson E, Bogdanovic N, Garlind A, Winblad B, Zilmer K, Kullisaar T, . The cerebrocortical areas in normal brain aging and in Alzheimer's disease: noticeable differences in the lipid peroxidation level and in antioxidant defense. Neurochem Res 2001;26:353–361.
  • Hayasaka K, Metoki K, Satoh T, Narisawa K, Tada K, Kawakami T, . Comparison of cytosolic and mitochondrial enzyme alterations in the livers of propionic or methylmalonic acidemia: a reduction of cytochrome oxidase activity. Tohoku J Exp Med 1982;137:329–334.
  • Ostergaard E, Wibrand F, Orngreen MC, Vissing J, Horn N. Impaired energy metabolism and abnormal muscle histology in mut- methylmalonic aciduria. Neurology 2005;65: 931–933.
  • Chandler RJ, Zerfas PM, Shanske S, Sloan J, Hoffmann V, Dimauro S, Venditti CP. Mitochondrial dysfunction in mut-methylmalonic acidemia. FASEB J 2009;23:1252–1261.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.