236
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Roles of mitochondrial Src tyrosine kinase and zinc in nitric oxide-induced cardioprotection against ischemia/reperfusion injury

, , , , &
Pages 517-525 | Received 23 Jan 2013, Accepted 11 Apr 2013, Published online: 13 May 2013

References

  • Lochner A, Marais E, Genade S, Moolman JA. Nitric oxide: a trigger for classic preconditioning? Am J Physiol 2000; 279:H2752–H2765.
  • Vegh A, Szekeres L, Parratt J. Preconditioning of the ischaemic myocardium; involvement of the L- arginine nitric oxide pathway. Br J Pharmacol 1992;107:648–652.
  • Qiu Y, Rizvi A, Tang XL, Manchikalapudi S, Takano H, Jadoon AK, et al. Nitric oxide triggers late preconditioning against myocardial infarction in conscious rabbits. Am J Physiol 1997;273:H2931–H2936.
  • Takano H, Tang XL, Qiu Y, Guo Y, French BA, Bolli R. Nitric oxide donors induce late preconditioning against myocardial stunning and infarction in conscious rabbits via an antioxidant-sensitive mechanism. Circ Res 1998;83:73–84.
  • Tsang A, Hausenloy DJ, Mocanu MM, Yellon DM. Postconditioning: A form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circ Res 2004;95:230–232.
  • Yang XM, Philipp S, Downey JM, Cohen MV. Postconditioning's protection is not dependent on circulating blood factors or cells but involves adenosine receptors and requires PI3- kinase and guanylyl cyclase activation. Basic Res Cardiol 2005;100:57–63.
  • Gerszten RE, Lim YC, Ding HT, Snapp K, Kansas G, Dichek DA, et al. Adhesion of monocytes to vascular cell adhesion molecule-1-transduced human endothelial cells: implications for atherogenesis. Circ Res 1998;82:871–878.
  • Bell RM, Maddock HL, Yellon DM. The cardioprotective and mitochondrial depolarising properties of exogenous nitric oxide in mouse heart. Cardiovasc Res 2003;57:405–415.
  • Nakano A, Liu GS, Heusch G, Downey JM, Cohen MV. Exogenous nitric oxide can trigger a preconditioned state through a free radical mechanism, but endogenous nitric oxide is not a trigger of classical ischemic preconditioning. J Mol Cell Cardiol 2000;32:1159–1167.
  • Xu ZL, Ji X, Boysen PG. Exogenous nitric oxide generates ROS and induces cardioprotection: involvement of PKG, mitochondrial K-ATP channels, and ERK. Am J Physiol 2004; 286:H1433–H1440.
  • Rakhit RD, Edwards RJ, Mockridge JW, Baydoun AR, Wyatt AW, et al. Nitric oxide-induced cardioprotection in cultured rat ventricular myocytes. Am J Physiol Heart Circ Physiol 2000;278:H1211–H1217.
  • Rakhit RD, Mojet MH, Marber MS, Duchen MR. Mitochondria as targets for nitric oxide-induced protection during simulated ischemia and reoxygenation in isolated neonatal cardiomyocytes. Circulation 2001;103:2617–2623.
  • Costa ADT, Pierre SV, Cohen MV, Downey JM, Garlid KD. cGMP signalling in pre- and post-conditioning: the role of mitochondria. Cardiovasc Res 2007;77:344–352.
  • Costa ADT, Garlid KD, West IC, Lincoln TM, Downey JM, Cohen MV, Critz SD. Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ Res 2005; 97:329–336.
  • Nadtochiy SM, Burwell LS, Brookes PS. Cardioprotection and mitochondrial S-nitrosation: effects of S-nitroso-2-mercaptopropionyl glycine (SNO-MPG) in cardiac ischemia-reperfusion injury. J Mol Cell Cardiol 2007;42:812–825.
  • Sun J, Murphy E. Protein S-nitrosylation and cardioprotection. Circ Res 2010;106:285–296.
  • Di Lisa F, Bernardi P. Mitochondria and ischemia-reperfusion injury of the heart: fixing a hole. Cardiovasc Res 2006;70: 191–199.
  • Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J 1999;341:233–249.
  • Burwell LS, Nadtochiy SM, Brookes PS. Cardioprotection by metabolic shut-down and gradual wake-up. J Mol Cell Cardiol 2009;46:804–810.
  • Clarke SJ, Khaliulin I, Das M, Parker JE, Heesom KJ, Halestrap AP. Inhibition of mitochondrial permeability transition pore opening by ischemic preconditioning is probably mediated by reduction of oxidative stress rather than mitochondrial protein phosphorylation. Circ Res 2008;102: 1082–1090.
  • Wang G, Liem DA, Vondriska TM, Honda HM, Korge P, Pantaleon DM, et al. Nitric oxide donors protect murine myocardium against infarction via modulation of mitochondrial permeability transition. Am J Physiol 2005;288: H1290–H1295.
  • Jang Y, Wang H, Xi J, Mueller RA, Norfleet EA, Xu Z. NO mobilizes intracellular Zn2 + via cGMP/PKG signaling pathway and prevents mitochondrial oxidant damage in cardiomyocytes. Cardiovasc Res 2007;75:426–433.
  • Nadtochiy SM, Burwell LS, Ingraham CA, Spencer CM, Friedman AE, Pinkert CA, Brookes PS. In vivo cardioprotection by S-nitroso-2-mercaptopropionyl glycine. J Mol Cell Cardiol 2009;46:960–968.
  • Hill BG, Darley-usmar VM. S-Nitrosation and thiol switching in the mitochondrion: a new paradigm for cardioprotection in ischaemic preconditioning. Biochem J 2008;412:e11–e13.
  • McIntosh R, Lee S, Ghio AJ, Xi J, Zhu M, Shen X, et al. The critical role of intracellular zinc in adenosine A2 receptor activation induced cardioprotection against reperfusion injury. J Mol Cell Cardiol 2010;49:41–47.
  • Brown AM, Kristal BS, Effron MS, Shestopalov AI, Ullucci PA, Sheu KFR, et al. Zn2 + inhibits alpha -Ketoglutarate-stimulated mitochondrial respiration and the isolated alpha -ketoglutarate dehydrogenase complex. J Biol Chem 2000;275:13441–13447.
  • Link TA, von Jagow G. Zinc ions inhibit the Q(P) center of bovine heart mitochondrial bc(1) complex by blocking a protonatable group. J Biol Chem 1995;270:25001–25006.
  • Sharpley MS, Hirst J. The inhibition of mitochondrial complex I (NADH:Ubiquinone Oxidoreductase) by Zn2+. J Biol Chem 2006;281:34803–34809.
  • Sensi SL, Ton-That D, Sullivan PG, Jonas EA, Gee KR, Kaczmarek LK, Weiss JH. Modulation of mitochondrial function by endogenous Zn2 + pools. Proc Natl Acad Sci U S A 2003;100:6157–6162.
  • Tibaldi E, Brunati AM, Massimino ML, Stringaro A, Colone M, Agostinelli E, et al. Src-Tyrosine kinases are major agents in mitochondrial tyrosine phosphorylation. J Cell Biochem 2008;104:840–849.
  • Miyazaki T, Neff L, Tanaka S, Horne WC, Baron R. Regulation of cytochrome c oxidase activity by c-Src in osteoclasts. J Cell Biol 2003;160:709–718.
  • Ping P, Zhang J, Zheng YT, Li RC, Dawn B, Tang XL, et al. Demonstration of selective protein kinase C-dependent activation of Src and Lck tyrosine kinases during ischemic preconditioning in conscious rabbits. Circ Res 1999;85: 542–550.
  • Vondriska TM, Zhang J, Song C, Tang X-L, Cao X, Baines CP, et al. Protein kinase C {epsilon}-Src modules direct signal transduction in nitric oxide-induced cardioprotection: complex formation as a means for cardioprotective signaling. Circ Res 2001;88:1306–1313.
  • Ludwig LM, Weihrauch D, Kersten JR, Pagel PS, Warltier DC. Protein kinase C translocation and Src protein tyrosine kinase activation mediate isoflurane-induced preconditioning in vivo: potential downstream targets of mitochondrial adenosine triphosphate-sensitive potassium channels and reactive oxygen species. Anesthesiology 2004;100:532–539.
  • Feng J, Lucchinetti E, Enkavi G, Wang Y, Gehrig P, Roschitzki B, et al. Tyrosine phosphorylation by Src within the cavity of the adenine nucleotide translocase 1 regulates ADP/ATP exchange in mitochondria. Am J Physiol Cell Physiol 2010;298:C740–748.
  • Lee S, Chanoit G, McIntosh R, Zvara DA, Xu ZL. Molecular mechanism underlying Akt activation in zinc-induced cardioprotection. Am J Physiol 2009;297:H569–H575.
  • Manzerra P, Behrens MM, Canzoniero LMT, Wang XQ, Heidinger V, Ichinose T, Yu SP, Choi DW. Zinc induces a Src family kinase-mediated up-regulation of NMDA receptor activity and excitotoxicity. Proc National Acad Sci USA 2001;98:11055–11061.
  • Sensi SL, Ton-That D, Weiss JH, Rothe A, Gee KR. A new mitochondrial fluorescent zinc sensor. Cell Calcium 2003;34:281–284.
  • Baines CP, Zhang J, Wang GW, Zheng YT, Xiu JX, Cardwell EM, et al. Mitochondrial PKCepsilon and MAPK form signaling modules in the murine heart: enhanced mitochondrial PKCepsilon-MAPK interactions and differential MAPK activation in PKCepsilon-induced cardioprotection. Circ Res 2002;90:390–397.
  • Minamiyama Y, Bito Y, Takemura S, Takahashi Y, Kodai S, Mizuguchi S, et al. Calorie restriction improves cardiovascular risk factors via reduction of mitochondrial reactive oxygen species in Type II diabetic rats. J Pharmacol Exp Ther 2007;320:535–543.
  • Shanker G, Aschner JL, Syversen T, Aschner M. Free radical formation in cerebral cortical astrocytes in culture induced by methylmercury. Mol Brain Res 2004;128:48–57.
  • Weiss JN, Korge P, Honda HM, Ping P. Role of the mitochondrial permeability transition in myocardial disease. Circ Res 2003;93:292–301.
  • West MB, Rokosh G, Obal D, Velayutham M, Xuan Y-T, Hill BG, et al. Cardiac myocyte-specific expression of inducible nitric oxide synthase protects against ischemia/reperfusion injury by preventing mitochondrial permeability transition. Circulation 2008;118:1970–1978.
  • Ohtani H, Katoh H, Tanaka T, Saotome M, Urushida T, Satoh H, Hayashi H. Effects of nitric oxide on mitochondrial permeability transition pore and thiol-mediated responses in cardiac myocytes. Nitric Oxide 2012;26:95–101.
  • Xu Z, Ji X, Boysen PG. Exogenous nitric oxide generates ROS and induces cardioprotection: involvement of PKG, mitochondrial KATP channels, and ERK. Am J Physiol 2004;286:H1433–H1440.
  • Xu Z, Park S, Mueller RA, Patterson C, Boysen PG. NO induces intracellular Zn2 + release via cGMP/PKG signal pathway and Zn2 + prevents mitochnrial oxidant damage in cardiomyocytes. Circulation 2004;110:III283.
  • Karagulova G, Yue Y, Moreyra A, Boutjdir M, Korichneva I. Protective role of intracellular zinc in myocardial ischemia/reperfusion is associated with preservation of protein kinase C isoforms. J Pharmacol Exp Ther 2007;321:517–525.
  • Lee I, Salomon AR, Ficarro S, Mathes I, Lottspeich F, Grossman LI, Huttemann M. cAMP-dependent tyrosine phosphorylation of subunit I inhibits cytochrome c oxidase activity. J Biol Chem 2005;280:6094–6100.
  • Livigni A, Scorziello A, Agnese S, Adornetto A, Carlucci A, Garbi C, et al. Mitochondrial AKAP121 Links cAMP and src signaling to oxidative metabolism. Mol Biol Cell 2006; 17:263–271.
  • Salvi M, Brunati AM, Bordin L, La Rocca N, Clari G, Toninello A. Characterization and location of Src-dependent tyrosine phosphorylation in rat brain mitochondria. Biochim Biophys Acta 2002;1589:181–195.
  • Wu W, Graves LM, Gill GN, Parsons SJ, Samet JM. Src- dependent phosphorylation of the epidermal growth factor receptor on tyrosine 845 is required for zinc-induced ras activation. J Biol Chem 2002;277:24252–24257.
  • Kumar SD, Vijaya M, Samy RP, Dheen ST, Ren M, Watt F, et al. Zinc supplementation prevents cardiomyocyte apoptosis and congenital heart defects in embryos of diabetic mice. Free Radic Biol Med 2012;53:1595–1606.
  • Itoh S, Lemay S, Osawa M, Che W, Duan Y, Tompkins A, et al. Mitochondrial Dok-4 recruits Src kinase and regulates NF-kappaB activation in endothelial cells. J Biol Chem 2005; 280:26383–26396.
  • Carroll J, Fearnley IM, Skehel JM, Shannon RJ, Hirst J, Walker JE. Bovine complex I is a complex of 45 different subunits. J Biol Chem 2006;281:32724–32727.
  • Palmisano G, Sardanelli AM, Signorile A, Papa S, Larsen MR. The phosphorylation pattern of bovine heart complex I subunits. Proteomics 2007;7:1575–1583.
  • Chen R, Fearnley IM, Peak-Chew SY, Walker JE. The phosphorylation of subunits of complex I from bovine heart mitochondria. J Biol Chem 2004;279:26036–26045.
  • Technikova-Dobrova Z, Sardanelli AM, Stanca MR, Papa S. cAMP-dependent protein phosphorylation in mitochondria of bovine heart. FEBS Lett 1994;350:187–191.
  • Schilling B, Aggeler R, Schulenberg B, Murray J, Row RH, Capaldi RA, Gibson BW. Mass spectrometric identification of a novel phosphorylation site in subunit NDUFA10 of bovine mitochondrial complex I. FEBS Lett 2005;579:2485–2490.
  • Pocsfalvi G, Cuccurullo M, Schlosser G, Scacco S, Papa S, Malorni A. Phosphorylation of B14.5a subunit from bovine heart complex I identified by titanium dioxide selective enrichment and shotgun proteomics. Mol Cell Proteomics 2007;6:231–237.
  • Rasmo DD, Palmisano G, Scacco S, Technikova-Dobrova Z, Panelli D, Cocco T, et al. Phosphorylation pattern of the NDUFS4 subunit of complex I of the mammalian respiratory chain. Mitochondrion 2010;10:464–471.
  • Papa S, De Rasmo D, Scacco S, Signorile A, Technikova-Dobrova Z, Palmisano G, et al. Mammalian complex I: a regulable and vulnerable pacemaker in mitochondrial respiratory function. Biochim Biophys Acta 2008;1777:719–728.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.