167
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Cytotoxicity of 1,4-diamino-2-butanone, a putrescine analogue, to RKO cells: mechanism and redox imbalance

, , &
Pages 672-682 | Received 12 Apr 2013, Accepted 08 Jun 2013, Published online: 08 Jul 2013

References

  • Menezes D, Valentim C, Oliveira MF, Vannier-santos MA. Putrescine analogue cytotoxicity against Trypanosoma cruzi. Parasitol Res 2006;98:99–105.
  • Soares CO, Colli W, Alves MJM, Bechara EJH. 1,4-Diamino-2-butanone a putrescine analogue promotes redox imbalance in Trypanosoma cruzi and mammalian cells. Arch Biochem Biophys 2012;528:103–107.
  • Ueno Y, Fukumatsu M, Ogasawara A, Watanabe T, Mikami T, Matsumoto T. Hyphae formation of Candida albicans is regulated by polyamines. Biol Pharm Bull 2004;27:890–892.
  • Maia C, Lanfredi-Rangel A, Santana-Anjos KG, Oliveira MF, Souza W, Vannier-Santos MA. Effects of a putrescine analog on Giardia lamblia. Parasitol Res 2008;103:363–370.
  • Pegg AE. Polyamine metabolism and its importance in neoplastic growth and target for chemotherapy. Cancer Res 1988; 48:759–774.
  • Rajeeve V, Pearce W, Cascante M, Vanhaesebroeck B, Cutillas PR. Polyamine production is downstream and upstream of oncogenic PI3K signalling and contributes to tumour cell growth. Biochem J 2013;450:619–628.
  • Colotti G, Ilari A. Polyamine metabolism in Leishmania: from arginine to trypanothione. Amino Acids 2011;40:269–285.
  • Igarashi K, Kashiwagi K. Modulation of cellular function by polyamines. Int J Biochem Cell Biol 2010;42:39–51.
  • McCann PP, Pegg AE. Ornithine decarboxylase as an enzyme target for therapy. Pharmacol Ther 1992;54:195–215.
  • Manen CA, Russell DH. Regulation of RNA polymerase I activity by ornithine decarboxylase. Biochem Pharmacol 1977;26:2379–2384.
  • Pegg AE. Regulation of ornithine decarboxylase. J Biol Chem 2006;281:14529–14532.
  • Vannier-Santos MA, Menezes D, Oliveira MF, Mello FG. The putrescine analogue 1,4-diamino-2-butanone affects polyamine synthesis transport ultrastructure and intracellular survival in Leishmania amazonensis. Microbiology 2008; 154:3104–3111.
  • Thackenkova AG, Nesterova LY. Polyamines as modulators of gene expression under oxidative stress in Escherichia coli. Biochemistry (Mosc) 2003;68:850–856.
  • Rhee HJ, Kim EJ, Lee JK. Physiological polyamines: simple primordial stress molecules. J Cell Mol Med 2007;11: 685–703.
  • Tkachenko AG, Akhova AV, Shumkov MS, Nesterova LY. Polyamines reduce oxidative stress in Escherichia coli cells exposed to bactericidal antibiotics. Res Microbiol 2012;163: 83–91.
  • Thornalley PJ. Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts. Arch Biochem Biophys 2003;419:31–40.
  • Soares CO, Alves MJ, Bechara EJH. 1,4-Diamino-2-butanone a wide-spectrum microbicide yields reactive species by metal-catalyzed oxidation. Free Radic Biol Med 2011;50: 1760–1770.
  • Bechara EJH, Dutra F, Cardoso VES, Sartori A, Olympio KPK, Penatti CAA, et al. The dual face of endogenous α-aminoketones: pro-oxidizing metabolic weapons. Comp Biochem Physiol Part C 2006;146:88–110.
  • Dutra F, Knudsen FS, Curi D, Bechara EJH. Aerobic oxidation of aminoacetone a threonine catabolite: iron catalysis and coupled iron release from ferritin. Chem Res Toxicol 2001;14:1323–1329.
  • Monteiro HP, Abdalla DS, Augusto O, Bechara EJ. Free radical generation during delta-aminolevulinic acid autoxidation: induction by hemoglobin and connections with porphyrinpathies. Arch Biochem Biophys 1989;271:206–216.
  • West JD, Ji C, Duncan ST, Amarnath V, Schneider C, Rizzo CJ, et al. Induction of apoptosis in colorectal carcinoma cells treated with 4-hydroxy-2-nonenal and structurally related aldehydic products of lipid peroxidation. Chem Res Toxicol 2004;17:453–462.
  • Codreanu SG, Zhang B, Sobecki SM, Billheimer DD, Liebler DC. Global analysis of protein damage by the lipid electrophile 4-hydroxy-2-nonenal. Mol Cell Proteomics 2009;8:670–680.
  • Oyama Y, Hayashi A, Ueha T, Maekawa K. Characterization of 2’7’-dichlorofluorescin fluorescence in dissociated mammalian brain neurons: estimation on intracellular content of hydrogen peroxide. Brain Res 1994;635:113–117.
  • Trayner ID, Rayner AP, Freeman GE, Farzaneh F. Quantitative multiwell myeloid differentiation assay using dichlorodihydrofluorescein diacetate (H2DCF-DA) or dihydrorhodamine 123 (H2R123). J Immunol Meth 1995;186:275–284.
  • Weis M, Cotgreave IC, Moore GA, Norbeck K, Moldéus P. Accessibility of hepatocyte protein thiols to monobromobimane. Biochim Biophysis Acta 1993;1176:13–19.
  • Anderson MT, Trudell JR, Voehringer DW, Tjioe IM, Herzenberg LA, Herzenberg LA. An improved monobromobimane assay for glutathione utilizing tris- (2-carboxyethyl)phosphine as the reductant. Anal Biochem 1999;272:107–109.
  • Rahman I, Kode A, Biswas SK. Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc 2006;1:3159–3165.
  • Furuya T, Kamada T, Murakami T, Kurose A, Sasaki K. Laser scanning cytometry allows detection of cell death with morphological features of apoptosis in cells stained with PI. Cytometry 1997;29:173–177.
  • Darzynkiewicz Z, Bedner E, Li X, Gorczyca W, Melamed MR. Laser-scanning cytometry: a new instrumentation with many applications. Exp Cell Res 1999;249:1–12.
  • Zeng J, Davies MJ. Evidence for the formation of adducts and S-(carboxymethyl)cysteine on reaction of alpha-dicarbonyl compounds with thiol groups on amino acids peptides and proteins. Chem Res Toxicol 2005;18:1232–1241.
  • Baker LM, Baker PR, Golin-Bisello F, Schopfer FJ, Fink M, Woodcock SR, et al. Nitro-fatty acid reaction with glutathione and cysteine Kinetic analysis of thiol alkylation by a Michael addition reaction. J Biol Chem 2007;282:31085–31093.
  • Gozzelino R, Jeney V, Soares MP. Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol 2010;50:323–354.
  • Wegiel B, Chin BY, Otterbein LE. Inhale to survive cycle or die? Carbon monoxide and cellular proliferation. Cell Cycle 2008;7:1379–1384.
  • Jansen T, Hortmann M, Oelze M, Optiz B, Steven S, Schell R, et al. Conversion of biliverdin to bilirubin by biliverdin reductase contributes to endothelial cell protection by heme oxygenase-1-evidence for direct and indirect antioxidant actions of bilirubin. J Mol Cell Cardiol 2010;49:186–195.
  • Ma Q, He X. Molecular basis of electrophilic and oxidative defense: promises and perils of Nrf2. Pharmacol Rev 2012; 64:1055–1081.
  • Weston CR, Davis RJ. The JNK signal transduction pathway. Curr Opin Cell Biol 2007;19:142–149.
  • Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003;421:499–506.
  • Vousden KH, Lu X. Live or let die: the cell's response to p53. Nature Rev Cancer 2002;2:594–604.
  • Stevens L, McKinnon IM, Winther M. The effects of 14-diaminobutanone on polyamine synthesis in Aspergillus nidulans. FEBS Lett 1977;75:180–182.
  • Ariyanayagam MR, Fairlamb AH. Diamine auxotrophy may be a universal feature of Trypanosoma cruzi epimastigotas. Mol Biochem Parasitol 1997;84:111–121.
  • Carrillo C, Cejas S, González NS, Algranati ID. Trypanosoma cruzi epimastigotes lack ornithine decarboxylase but can express a foreing gene enconding this enzyme. FEBS Lett 1999;454:192–196.
  • Sartori A, Garay-Malpartida HM, Forni MF, Schumacher RI, Dutra F, Sogayar MC, Bechara EJ. Aminoacetone a putative endogenous source of methylglyoxal causes oxidative stress and death to insulin-producing RINm5f cells. Chem Res Toxicol 2008;21:1841–1850.
  • Hu X, Washington S, Verderame MF, Manni A. Interaction between polyamines and the mitogen-activated protein kinase pathway in the regulation of cell cycle variables in breast cancer cells. Cancer Res 2005;65:11026–11033.
  • Koomoa DL, Yco LP, Borsics T, Wallick CJ, Bachmann AS. Ornithine decarboxylase inhibition by alpha-difluoromethylornithine activates opposing signaling pathways via phosphorylation of both Akt/protein kinase B and p27Kip1 in neuroblastoma. Cancer Res 2008;68:9825–9831.
  • Jeter JM, Alberts DS. Difluoromethylornithine: the proof is in the polyamines. Cancer Prev Res (Phila) 2012;5:1341–1344.
  • Sies H. Glutathione and its role in cellular functions. Free Radic Biol Med 1999;27:916–921.
  • Valko M, Rhodes CJ, Moncol J, Izkovic M, Mazur M. Free radical metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006;160:1–40.
  • Li W, Yuan XM, Ivanova S, Tracey KJ, Eaton JW, Brunk UT. 3-Aminopropanal formed during cerebral ischaemia is a potent lysosomotropic neurotoxin. Biochem J 2003;371:429–436.
  • Rabbani N, Thornalley PJ. Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome. Amino Acids 2012;42:1133–1142.
  • Kalapos MP. Where does plasma methylglyoxal originate from?Diabetes Res Clin Pract 2012;99:260–271.
  • Lee JM, Johnson JA. An important role of Nrf2-ARE pathway in the cellular defense mechanism. J Biochem Mol Biol 2004;37:139–143.
  • Osburn WO, Kensler TW. Nrf2 signaling: an adaptive response pathway for protection against environmental toxic insults. Mutat Res 2008;659:31–39.
  • Dinkova-Kostova AT, Holtzclaw WD, Kensler TW. The role of Keap1 in cellular protective responses. Chem Res Toxicol 2005;18:1779–1791.
  • Dinkova-Kostova AT, Talalay P. NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1) a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch Biochem Biophys 2010;501:116–123.
  • Sasaki H, Sato H, Kuriyama-Matsumura K, Sato K, Maebara K, Wang H, et al. Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression. J Biol Chem 2002;277:44765–44771.
  • Kwak MK, Kensler TW, Casero RA. Induction of phase 2 enzymes by serum oxidized polyamines through activation of Nrf2: effect of the polyamine metabolite acrolein. Biochem Biophys Res Commun 2003;305:662–670.
  • Finkel T, Holbrook NJ. Oxidants oxidative stress and the biology of ageing. Nature 2000;408:239–247.
  • Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell 2000;103:239–252.
  • Pietenpol JA, Stewart ZA. Cell cycle checkpoint signaling: cell cycle arrest versus apoptosis. Toxicology 2002;181–182: 475–481.
  • Vermeulen K, Van Bockstaele DR, Berneman ZN. The cell cycle: a review of regulation deregulation and therapeutic targets in cancer. Cell Prolif 2003;36:131–149.
  • Halliwell B, Gutteridge JMC. Free Radical Biology and Medicine, 3rd ed. New York, US: Oxford University Press; 2007. pp. 220–236.
  • Onuki J, Chen Y, Teixeira PC, Schumacher RI, Medeiros MH, Van Houten B, Di Mascio P. Mitochondrial and nuclear DNA damage induced by 5-aminolevulinic acid ArchBiochem Biophys 2004;432:178–187.
  • Huang Y, Pledgie A, Rubin E, Marton LJ, Woster PM, Sukumar S, et al. Role of p53/p21(Waf1/Cip1) in the regulation of polyamine analogue-induced growth inhibition and cell death in human breast cancer cells. Cancer Biol Ther 2005;4:1006–1013.
  • Ueda A, Araie M, Kubota S. Polyamine depletion induces G1 and S phase arrest in human retinoblastoma Y79 cells. Cancer Cell Int 2008;8:2.
  • Yamashita T, Nishimura K, Saiki R, Okudaira H, Tome M, Higashi K, et al. Role of polyamines at the G1/S boundary and G2/M phase of the cell cycle. Int J Biochem Cell Biol 2013; doi:101016/jbiocel201302021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.