282
Views
5
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

The uremic toxin indoxyl sulfate acts as a pro- or antioxidant on LDL oxidation

, , , , , , & show all
Pages 641-648 | Received 09 Dec 2013, Accepted 21 Feb 2014, Published online: 25 Mar 2014

References

  • Neirynck N, Glorieux G, Schepers E, Pletinck A, Dhondt A, Vanholder R. Review of protein-bound toxins, possibility for blood purification therapy. Blood Purif 2013;35 Suppl 1:45–50.
  • Popolo A, Autore G, Pinto A, Marzocco S. Oxidative stress in patients with cardiovascular disease and chronic renal failure. Free Radic Res 2013;47:346–356.
  • Galli F, Piroddi M, Annetti C, Aisa C, Floridi E, Floridi A. Oxidative stress and reactive oxygen species. Contrib Nephrol 2005;149:240–260.
  • Piroddi M, Pilolli F, Aritomi M, Galli F. Vitamin E as a functional and biocompatibility modifier of synthetic hemodialyzer membranes: an overview of the literature on vitamin E-modified hemodialyzer membranes. Am J Nephrol 2012; 35:559–572.
  • Lekawanvijit S, Kompa AR, Wang BH, Kelly DJ, Krum H. Cardiorenal syndrome: the emerging role of protein-bound uremic toxins. Circ Res 2012;111:1470–1483.
  • Miyamoto Y, Iwao Y, Tasaki Y, Sato K, Ishima Y, Watanabe H, et al. The uremic solute indoxyl sulfate acts as an antioxidant against superoxide anion radicals under normal-physiological conditions. FEBS Lett 2010;584: 2816–2820.
  • Miyamoto Y, Watanabe H, Otagiri M, Maruyama T. New insight into the redox properties of uremic solute indoxyl sulfate as a pro- and anti-Oxidant. Ther Apher Dial 2011; 15:129–131.
  • Gelasco AK, Raymond JR. Indoxyl sulfate induces complex redox alterations in mesangial cells. Am J Physiol Renal Physiol 2006;290:F1551–F1558.
  • Motojima M, Hosokawa A, Yamato H, Muraki T, Yoshioka T. Uremic toxins of organic anions up-regulate PAI-1 expression by induction of NF-kappaB and free radical in proximal tubular cells. Kidney Int 2003;63:1671–1680.
  • Dou L, Jourde-Chiche N, Faure V, Cerini C, Berland Y, Dignat-George F, et al. The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells. J Thromb Haemost 2007;5:1302–1308.
  • Shimoishi K, Anraku M, Kitamura K, Tasaki Y, Taguchi K, Hashimoto M, et al. An oral adsorbent, AST-120 protects against the progression of oxidative stress by reducing the accumulation of indoxyl sulfate in the systemic circulation in renal failure. Pharm Res 2007;24:1283–1289.
  • Dursun B, Dursun E, Capraz I, Ozben T, Apaydin A, Suleymanlar G. Are uremia, diabetes, and atherosclerosis linked with impaired antioxidant mechanisms?. J Investig Med 2008;56:545–552.
  • Himmelfarb J, Stenvinkel P, Ikizler TA, Hakim RM. The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int 2002;62: 1524–1538.
  • Vlassara H, Torreggiani M, Post JB, Zheng F, Uribarri J, Striker GE. Role of oxidants/inflammation in declining renal function in chronic kidney disease and normal aging. Kidney Int 2009;76:S3–S11.
  • Cachofeiro V, Goicochea M, de Vinuesa SG, Oubina P, Lahera V, Luno J. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int 2008;74:S4–S9.
  • Schleicher E, Friess U. Oxidative stress, AGE, and atherosclerosis. Kidney Int 2007;72:S17–S26.
  • Steinberg D, Parthasarathy S, Carew T, Khoo J, Witztum J. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 1989;320: 915–924.
  • Berliner JA, Navab M, Fogelman AM, Frank JS, Demer LL, Edwards PA, et al. Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation 1995; 91:2488–2496.
  • Berliner JA, Heinecke JW. The role of oxidized lipoproteins in atherogenesis. Free Rad Biol Med 1996;20:707–727.
  • Steinberg D, Lewis A. Conner memorial lecture. Oxidative modification of LDL and atherogenesis. Circulation 1997;95: 1062–1071.
  • Maggi E, Bellazzi R, Falaschi F, Frattoni A, Perani G, Finardi G, et al. Enhanced LDL oxidation in uremic patients: An additional mechanism for accelerated atherosclerosis?Kidney Int 1994;45:876–883.
  • Holvoet P, Donck J, Landeloos M, Brouwers E, Luijtens K, Arnout J, et al. Correlation between oxidized low density lipoproteins and von Willebrand factor in chronic renal failure. Thromb Haemost 1996;76:663–669.
  • Drueke TB, Nguyen KT, Massy ZA, Witko-Sarsat V, Lacour B, Descamps-Latscha B. Role of oxidized low-density lipoprotein in the atherosclerosis of uremia. Kidney Int 2001; 59:S114–S119.
  • van Tits L, de Graaf J, Hak-Lemmers H, Bredie S, Demacker P, Holvoet P, et al. Increased levels of low-density lipoprotein oxidation in patients with familial hypercholesterolemia and in end-stage renal disease patients on hemodialysis. Lab Invest 2003;83:13–21.
  • Bufano G, Usberti M, Mandolfo S, Alberti F, Piroddi M, Galli F. Von Willebrand factor and autoantibodies against oxidized LDL in hemodialysis patients treated with vitamin E-modified dialyzers. Int J Artif Organs 2004;27:214–221.
  • Laggner H, Muellner MK, Schreier S, Sturm B, Hermann M, Exner M, et al. Hydrogen sulphide: a novel physiological inhibitor of LDL atherogenic modification by HOCl. Free Radic Res 2007;41:741–747.
  • Nourooz-Zadeh J, Tajaddini-Sarmadi J, Ling KL, Wolff SP. Low-density lipoprotein is the major carrier of lipid hydroperoxides in plasma. Relevance to determination of total plasma lipid hydroperoxide concentrations. Biochem J 1996;313: 781–786.
  • Esterbauer H, Striegl G, Puhl H, Rotheneder M. Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radic Res Comm 1989;6:67–75.
  • The NIST 08 Mass Spectrometer database, Scientific Instrument Services Inc., New Jersey, http://www.sisweb.com/software/ms/nist.htm (accessed 2008).
  • Wiley Registry™ of Mass Spectral Data, 8th Edition, Scientific Instrument Services Inc., New Jersey, http://www.sisweb.com/software/ms/wiley.htm (accessed 2006).
  • Bagnati M, Perugini C, Cau C, Bordone R, Albano E, Bellomo G. When and why a water-soluble antioxidant becomes pro-oxidant during copper-induced low-density lipoprotein oxidation: a study using uric acid. Biochem J 1999;340:143–152.
  • Patterson RA, Horsley ETM, Leake DS. Prooxidant and antioxidant properties of human serum ultrafiltrates toward LDL: important role of uric acid. J Lipid Res 2003;44:512–521.
  • Fabjan JS, Abuja PM, Schaur RJ, Sevanian A. Hypochlorite induces the formation of LDL(-), a potentially atherogenic low density lipoprotein subspecies. FEBS Lett 2001;499:69–72.
  • Hwang I-s, Lee J, Lee DG. Indole-3-carbinol generates reactive oxygen species and induces apoptosis. Biol Pharm Bull 2011;34:1602–1608.
  • Massaeli H, Sobrattee S, GN P. The importance of lipid solubility in antioxidants and free radical generating systems for determining lipoprotein prooxidation. Free Radic Biol Med 1999:1524–1530.
  • Goyal RN, Kumar N, Singhal NK. Oxidation chemistry and biochemistry of indole and effect of its oxidation product in albino mice. Bioelectrochem Bioenerg 1998;45:47–53.
  • Galli F. Protein damage and inflammation in uraemia and dialysis patients. Nephrol Dial Transplant 2007;22: v20–v36.
  • Piroddi M, Palmese A, Pilolli F, Amoresano A, Pucci P, Ronco C, et al. Plasma nitroproteome of kidney disease patients. Amino Acids 2011;40:653–667.
  • Piroddi M, Bartolini D, Ciffolilli S, Galli F. Nondialyzable uremic toxins. Blood Purif 2013;35:30–41.
  • De Smet R, Dhondt A, Eloot S, Galli F, Waterloos MA, Vanholder R. Effect of the super-flux cellulose triacetate dialyser membrane on the removal of non-protein-bound and protein-bound uraemic solutes. Nephrol Dial Transplant 2007;22:2006–2012.
  • Niwa T. Indoxyl sulfate is a nephro-vascular toxin. J Ren Nutr 2010;20:S2–S6.
  • Marzocco S, Dal Piaz F, Di Micco L, Torraca S, Sirico ML, Tartaglia D, et al. Very low protein diet reduces indoxyl sulfate levels in chronic kidney disease. Blood Purif 2013;35: 196–201.
  • Niwa T, Ise M. Indoxyl sulfate, a circulating uremic toxin, stimulates the progression of glomerular sclerosis. J Lab Clin Med 1994;124:96–104.
  • Tumur Z, Niwa T. Indoxyl sulfate inhibits nitric oxide production and cell viability by inducing oxidative stress in vascular endothelial cells. Am J Nephrol 2009;29:551–557.
  • Muteliefu G, Enomoto A, Jiang P, Takahashi M, Niwa T. Indoxyl sulphate induces oxidative stress and the expression of osteoblast-specific proteins in vascular smooth muscle cells. Nephrol Dial Transplant 2009;24:2051–2058.
  • Ujhelyi L, Balla G, Jeney V, Varga Z, Nagy E, Vercellotti GM, et al. Hemodialysis reduces inhibitory effect of plasma ultrafiltrate on LDL oxidation and subsequent endothelial reactions. Kidney Int 2006;69:144–151.
  • Galli F, Piroddi M, Bartolini D, Ciffolilli S, Buoncristiani E, Ricci G, et al. Blood thiol status and erythrocyte glutathione-S-transferase in chronic kidney disease patients on treatment with frequent (daily) hemodialysis. Free Radic Res 2014;48: 273–281.
  • Marshall K-A, Reiter RsJ, Poeggeler B, Aruoma OI, Halliwell B. Evaluation of the antioxidant activity of melatonin in vitro. Free Radic Biol Med 1996;21:307–315.
  • Pieri C, Marra M, Gaspar R, Damjanovich S. Melatonin protects LDL from oxidation but does not prevent the apolipoprotein derivatization. Biochem Biophys Res Comm 1996; 222:256–260.
  • Matuszak Z, Reszka KJ, Chignell CF. Reaction of melatonin and related indoles with hydroxyl radicals: EPR and spin trapping investigations. Free Radic Biol Med 1997;23:367–372.
  • Gozzo A, Lesieur D, Duriez P, Fruchart J-C, Teissier E. Structure-activity relationships in a series of melatonin analogues with the low-density lipoprotein oxidation model. Free Radic Biol Med 1999;26:1538–1543.
  • Ximenes VF, Pessoa AS, Padovan CZ, Abrantes DC, Gomes FHF, Maticoli MA, et al. Oxidation of melatonin by AAPH-derived peroxyl radicals: evidence of a pro-oxidant effect of melatonin. Biochim Biophys Acta 2009;1790: 787–792.
  • Estevao MS, Carvalho LC, Ribeiro D, Couto D, Freitas M, Gomes A, et al. Antioxidant activity of unexplored indole derivatives: synthesis and screening. Eur J Med Chem 2010; 45:4869–4878.
  • Carvalho LC, Estevao MS, Ferreira LM, Fernandes E, Marques MMB. A new insight on the hypochlorous acid scavenging mechanism of tryptamine and tryptophan derivatives. Bioorg Med Chem Lett 2010;20:6475–6478.
  • Cano A, Alcaraz O, Arnao M. Free radical-scavenging activity of indolic compounds in aqueous and ethanolic media. Anal Bioanal Chem 2003;376:33–37.
  • Zhao F, Liu Z-Q, Wu D. Antioxidative effect of melatonin on DNA and erythrocytes against free-radical-induced oxidation. Chem Phys Lipids 2008;151:77–84.
  • Jahng Y. Progress in the studies on tryptanthrin, an alkaloid of history. Arch Pharm Res 2013;36:517–535.
  • Batanero B, Barba F. Electrosynthesis of tryptanthrin. Tetrahedron Lett 2006;47:8201–8203.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.