1,656
Views
167
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

New insights into antioxidant strategies against paraquat toxicity

, &
Pages 623-640 | Received 17 Jan 2014, Accepted 26 Feb 2014, Published online: 27 Mar 2014

References

  • Cicchetti F, Drouin-Ouellet J, Gross RE. Environmental toxins and Parkinson's disease: what have we learned from pesticide-induced animal models?. Trends Pharmacol Sci 2009;30:475–583.
  • Vicente JA, Peixoto F, Lopes ML, Madeira VM. Differential sensitivities of plant and animal mitochondria to the herbicide paraquat. J Biochem Mol Toxicol 2001;15: 322–330.
  • Franco R, Li S, Rodriguez-Rocha H, Burns M, Panayiotidis MI. Molecular mechanisms of pesticide-induced neurotoxicity: relevance to Parkinson's disease. Chem Biol Interact 2010;188:289–300.
  • Zerin T, Kim YS, Hong SY, Song HY. Quercetin reduces oxidative damage induced by paraquat via modulating expression of antioxidant genes in A549 cells. J Appl Toxicol 2013; 33:1460–1467.
  • Suntres ZE. Role of antioxidants in paraquat toxicity. Toxicology 2002;180:65–77.
  • Moretto A, Colosio C. Biochemical and toxicological evidence of neurological effects of pesticides: the example of Parkinson's disease. Neurotoxicology 2011;32:383–391.
  • McCormack AL, Di Monte DA. Effects of L-dopa and other amino acids against paraquat-induced nigrostriatal degeneration. J Neurochem 2003;85:82–86.
  • Tieu K. A guide to neurotoxic animal models of Parkinson's disease. Cold Spring Harb Perspect Med 2011, 1:a009316.
  • Berry C, La Vecchia C, Nicotera P. Paraquat and Parkinson's disease. Cell Death Differ 2010;17:1115–1125.
  • Awadalla EA. Efficacy of vitamin C against liver and kidney damage induced by paraquat toxicity. Exp Toxicol Phatol 2012;64: 431–434.
  • Zhi Q, Sun H, Qian X, Yang L. Edaravone, a novel antidote against lung injury and pulmonary fibrosis induced by paraquat?. Int Immunopharmacol 2011;11:96–102.
  • Mayhew SG. The redox potential of dithionite and SO2 from equilibrium reactions with flavodoxins, methyl viologen and hydrogen plus hydrogenase. Eur J Biochem 1978;85: 535–547.
  • Cochemé HM, Murphy MP. Chapter 22: the uptake and interactions of the redox cycler paraquat with mitochondria. Methods Enzymol 2009;456:395–417.
  • Cristovao AC, Choi DH, Baltazar G, Beal MF, Kim YS. The role of NADPH oxidase 1-derived reactive oxygen species in paraquat-mediated dopaminergic cell death. Antiox Redox Signal 2009;11:2105–2118.
  • Witschi H, Kacew S, Hirai K, Cote MG. In vivo oxidation of reduced nicotinamide-adenine dinucleotide phosphate by paraquat and diquat in rat lung. Chem Biol Interact 1977; 19:143–160.
  • Kopaczyk-Locke K. Biochemical Measurements of Paraquat Toxicity. New York: Academic Press; 1977. pp. 99–115.
  • Rossouw DJ, Engelbrecht FM. The effect of paraquat on the respiration of lung cell fractions. S Afr Med J 1978;54: 1101–1104.
  • Yamamoto T, Anno M, Sato T. Effects of paraquat on mitochondria of rat skeletal muscle. Comp Biochem Physiol C 1987;86:375–378.
  • Palmeira CM, Moreno AJ, Madeira VM. Mitochondrial bioenergetics is affected by the herbicide paraquat. Biochim Biophys Acta 1995;1229:187–192.
  • Sata T, Takeshige K, Takayanagi R, Minakami S. Lipid peroxidation by bovine heart submitochondrial particles stimulated by 1,1’-dimethyl-4,4’-bipyridylium dichloride (paraquat). Biochem Pharmacol 1983;32:13–19.
  • Cochemé HM, Murphy MP. Complex I is the major site of mitochondrial superoxide production by paraquat. J Biol Chem 2008;283:1786–1798.
  • Castello PR, Drechsel DA, Patel M. Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain. J Biol Chem 2007;282:14186–14193.
  • Shimada H, Hirai K, Simamura E, Hatta T, Iwakiri H, Mizuki K, et al. Paraquat toxicity induced by voltage-dependent anion channel 1 acts as an NADH-dependent oxidoreductase. J Biol Chem 2009;42:28642–28649.
  • Shimada H, Hirai K, Simamura E, Pan J. Mitochondrial NADH-quinone oxidoreductase of the outer membrane is responsible for paraquat cytotoxicity in rat liver. Arch Biochem Biophys 1998;351:75–81.
  • Fukushima T, Yamada K, Isobe A, Shiwaku K, Yamane Y. Mechanism of cytotoxicity of paraquat. I. NADH oxidation and paraquat radical formation via complex I. Exp Toxicol Pathol 1993;45:345–349.
  • Drechsel DA, Patel M. Differential contribution of the mitochondrial respiratory chain complexes to reactive oxygen species production by redox cycling agents implicated in parkinsonism. Toxicol Sci 2009;112:427–434.
  • Brouillet E, Jacquard C, Bizat N, Blum D. 3-Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington's disease. J Neurochem 2005;95:1521–1540.
  • Hanagasi HA, Ayribas D, Baysal K, Emre M. Mitochondrial complex I, II/III, and IV activities in familial and sporadic Parkinson's disease. Int J Neurosci 2005;115:479–493.
  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci 2000;3:1301–1306.
  • Tawara T, Fukushima T, Hojo N, Isobe A, Shiwaku K, Setogawa T, Yamane Y. Effects of paraquat on mitochondrial electron transport system and catecholamine contents in rat brain. Arch Toxicol 1996;70:585–589.
  • Czerniczyniec A, Karadayian G, Bustamante J, Cutrera RA, Lores-Arnaiz S. Paraquat induces behavioral changes and cortical and striatal mitochondrial dysfunction. Free Radic Biol Med 2011;51:1428–1436.
  • Czerniczyniec A, Lores-Arnaiz S, Bustamante J. Mitochondrial susceptibility in a model of paraquat neurotoxicity. Free Radic Res2013;47:614–623.
  • Kaspar JW, Niture SK, Jaiswal AK. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Rad Biol Med 2009;47: 1304–1309.
  • Cuadrado A, Moreno-Murciano P, Pedraza-Chaverri J. The transcription factor Nrf2 as a new therapeutic target in Parkinson's disease. Expert Opin Ther Targets 2009;13:319–329.
  • Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 1996;20:933–956.
  • Rajadurai M, Stanely Mainzen Prince P. Preventive effect of naringin on lipid peroxides and antioxidants in isoproterenol-induced cardiotoxicity in Wistar rats: biochemical and histopathological evidences. Toxicology 2006;228:259–268.
  • Kanno S, Shouji A, Tomizawa A, Hiura T, Osana Y, Ujibe M, et al. Inhibitory effect of naringin on lipopolysaccharide- induced endotoxin shock in mice and nitric oxide production in RAW264.7 macrophages. Life Sci 2006;78:673–681.
  • Nie YC, Wu H, Li PB, Xie LM, Luo YL, Shen JG, Su WW. Naringin attenuates EGF-induced MUC5AC secretion in A549 cells by suppressing the cooperative activities of MAPKs-AP-1 and IKKs-IκB-NF-κB signaling pathways. Eur J Pharmacol 2012;690:207–213.
  • Liu Y, Wu H, Nie YC, Chen JL, Su WW, Li PB. Naringin attenuates acute lung injury in LPS-treated mice by inhibiting NF-κB pathway. Int Immunopharmacol 2011;11:1606–1612.
  • Chen Y, Nie YC, Luo YL, Lin F, Zheng YF, Cheng GH, et al. Protective effects of naringin against paraquat-induced acute lung injury and pulmonary fibrosis in mice. Food Chem Toxicol 2013;58:133–140.
  • Valenzuela A, Garrido A. Biochemical bases of the pharmacological action of the flavonoid silymarin and of its structural isomer silibinin. Biol Res 1994;27:105–112.
  • Kren V, Walterová D. Silybin and silymarin–new effects and applications. Biomed Pap Med Fac Univ Palacký Olomouc Czech Repub 2005;149:29–41.
  • Wen Z, Dumas TE, Schrieber SJ, Hawke RL, Fried MW, Smith PC. Pharmacokinetics and metabolic profile of free, conjugated, and total silymarin flavonolignans in human plasma after oral administration of milk thistle extract. Drug Metab Dispos 2008;36:65–72.
  • Varga Z, Seres I, Nagy E, Ujhelyi L, Balla G, Balla J, Antus S. Structure prerequisite for antioxidant activity of silybin in different biochemical systems in vitro. Phytomedicine 2006;13:85–93.
  • Dehmlow C, Murawski N, de Groot H. Scavenging of reactive oxygen species and inhibition of arachidonic acid metabolism by silibinin in human cells. Life Sci 1996;58:1591–1600.
  • Polyak SJ, Morishima C, Lohmann V, Pal S, Lee DY, Liu Y, et al. Identification of hepatoprotective flavonolignans from silymarin. Proc Natl Acad Sci U S A 2010;107:5995–5999.
  • Podder B, Kim YS, Zerin T, Song HY. Antioxidant effect of silymarin on paraquat-induced human lung adenocarcinoma A549 cell line. Food Chem Toxicol 2012;50:3206–3214.
  • Toyoda K, Fujii K, Kamouchi M, Nakane H, Arihiro S, Okada Y, et al. Free radical scavenger, edaravone, in stroke with internal carotid artery occlusion. J Neurol Sci 2004; 221:11–17.
  • Watanabe T, Tanaka M, Watanabe K, Takamatsu Y, Tobe A. Research and development of the free radical scavenger edaravone as a neuroprotectant. Yakugaku Zasshi 2004;124: 99–111.
  • Mao YF, Yan N, Xu H, Sun JH, Xiong YC, Deng XM. Edaravone, a free radical scavenger, is effective on neuropathic pain in rats. Brain Res 2009;1248:68–75.
  • Ito K, Ozasa H, Horikawa S. Edaravone protects against lung injury induced by intestinal ischemia/reperfusion in rat. Free Radic Biol Med 2005;38:369–374.
  • Doi K, Suzuki Y, Nakao A, Fujita T, Noiri E. Radical scavenger edaravone developed for clinical use ameliorates ischemia/reperfusion injury in rat kidney. Kidney Int 2004;65: 1714–1723.
  • Russo A, Borrelli F. Bacopa monniera, a reputed nootropic plant: an overview. Phytomedicine 2005;12:305–317.
  • Nunes LG. Phytochemistry prospection and mutagenicity evaluate in vitro of tree species vegetables: Strychnos Pseudoquina A. St.-Hill., Coutarea Hexandra (Jacq.) K. Schum and Bathysa cuspidata (A. St.-Hil.) Hook [thesis]. Viçosa (Minas Gerais): Federal University of Viçosa; 2008. 97 p. Available from: UFV Digital Library of theses and dissertations.
  • Kim KS, Suh GJ, Kwon WY, Kwak YH, Lee K, Lee HJ, et al. Antioxidant effects of selenium on lung injury in paraquat intoxicated rats. Clin Toxicol (Phila) 2012;50:749–753.
  • Novaes RD, Gonçalves RV, Cupertino MC, Marques DC, Rosa DD, Peluzio Mdo C, et al. Bark extract of Bathysa cuspidata attenuates extra-pulmonary acute lung injury induced by paraquat and reduces mortality in rats. Int J Exp Pathol 2012;93: 225–233.
  • Novaes RD, Gonçalves RV, Marques DC, Cupertino Mdo C, Peluzio Mdo C, Leite JP, Maldonado IR. Effect of bark extract of Bathysa cuspidata on hepatic oxidative damage and blood glucose kinetics in rats exposed to paraquat. Toxicol Pathol 2012;40:62–70.
  • Gorąca A, Huk-Kolega H, Piechota A, Kleniewska P, Ciejka E, Skibska B. Lipoic acid - biological activity and therapeutic potential. Pharmacol Rep 2011;63:849–858.
  • Packer L. Free radical scavengers and antioxidants in prophylaxy and treatment of brain diseases. In: Packer L, Prilipko L, Christen Y (eds.). Free Radicals in the Brain: Aging, Neurological, and Mental Disorders. Berlin: Springer-Verlag; 1992. Pp. 1–20.
  • Ghibu S, Richard C, Vergely C, Zeller M, Cottin Y, Rochette L. Antioxidant properties of an endogenous thiol: alpha-lipoic acid, useful in the prevention of cardiovascular diseases. J Cardiovasc Pharmacol 2009;54:391–398.
  • Azuma A, Nukiwa T, Tsuboi E, Suga M, Abe S, Nakata K, et al. Double-blind, placebo-controlled trial of pirfenidone in patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2005;171:1040–1047.
  • Taniguchi H, Ebina M, Kondoh Y, Ogura T, Azuma A, Suga M, et al. Pirfenidone in idiopathic pulmonary fibrosis. Eur Respir J 2010;35:821–829.
  • Shihab FS, Bennett WM, Yi H, Andoh TF. Effect of pirfenidone on apoptosis-regulatory genes in chronic cyclosporine nephrotoxicity. Transplantation 2005;79:419–426.
  • Seifirad S, Keshavarz A, Taslimi S, Aran S, Abbasi H, Ghaffari A. Effect of pirfenidone on pulmonary fibrosis due to paraquat poisoning in rats. Clin Toxicol (Phila) 2012;50: 754–758.
  • Preston SJ, Arnold MH, Beller EM, Brooks PM, Buchanan WW. Comparative analgesic and anti-inflammatory properties of sodium salicylate and acetylsalicylic acid (aspirin) in rheumatoid arthritis. Br J Clin Pharmacol 1989; 27:607–611.
  • Huang WD, Wang JZ, Lu YQ, Di YM, Jiang JK, Zhang Q. Lysine acetylsalicylate ameliorates lung injury in rats acutely exposed to paraquat. Chin Med J 2011;124: 2496–2501.
  • Mugesh G, du Mont WW, Sies H. Chemistry of biologically important synthetic organoselenium compounds. Chem Rev 2001;101:2125–2179.
  • Nogueira CW, Zeni G, Rocha JB. Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem Rev 2004;104:6255–6285.
  • Cheng W, Fu YX, Porres JM, Ross DA, Lei XG. Selenium-dependent cellular glutathione peroxidase protects mice against a pro-oxidant-induced oxidation of NADPH, NADH, lipids, and protein. FASEB J 1999;13:1467–1475.
  • Moskaug JO, Carlsen H, Myhrstad M, Blomhoff R. Molecular imaging of the biological effects of quercetin and quercetin-rich foods. Mech Ageing Dev 2004;125:315–324.
  • Serafini M, Maiani G, Ferro-Luzzi A. Alcohol-free red wine enhances plasma antioxidant capacity in humans. J Nutr 1998; 128:1003–1007.
  • Kahraman A, Erkasap N, Koken T, Serteser M, Aktepe F, Erkasap S. The antioxidative and antihistaminic properties of quercetin in ethanol-induced gastric lesions. Toxicology 2003; 183:133–142.
  • Molina MF, Sanchez-Reus I, Iglesias I, Benedi J. Quercetin, a flavonoid antioxidant, prevents and protects against ethanol-induced oxidative stress in mouse liver. Biol Pharm Bull 2003;26:1398–1402.
  • Park HK, Kim SJ, Kwon do Y, Park JH, Kim YC. Protective effect of quercetin against paraquat-induced lung injury in rats. Life Sci 2010;87:181–186.
  • Lissi EA, Pizarro M, Aspee A, Romay C. Kinetics of phycocyanine bilin groups destruction by peroxyl radicals. Free Radic Biol Med 2000;28:1051–1055.
  • Sun Y, Zhang J, Yan Y, Chi M, Chen W, Sun P, Qin S. The protective effect of C-phycocyanin on paraquat-induced acute lung injury in rats. Environ Toxicol Pharmacol 2011; 32:168–174.
  • Rastogi S, Pal R, Kulshreshtha DK. Bacoside A3-a triterpenoid saponin from Bacopa monniera. Phytochemistry 1994; 36:1133–1137.
  • Rajasekar N, Dwivedi S, Tota SK, Kamat PK, Hanif K, Nath C, Shukla R. Neuroprotective effect of curcumin on okadaic acid induced memory impairment in mice. Eur J Pharmacol 2013;715:381–394.
  • Shinomol GK, Muralidhara, Bharath MM. Exploring the Role of “Brahmi” (Bocopa monnieri and Centella asiatica) in brain function and therapy. Recent Pat Endocr Metab Immune Drug Discov 2011;5:33–49.
  • Singh M, Murthy V, Ramassamy C. Standardized extracts of Bacopa monniera protect against MPP+- and paraquat-induced toxicity by modulating mitochondrial activities, proteasomal functions, and redox pathways. Toxicol Sci 2012;125:219–232.
  • Auer BL, Auer D, Rodgers AL. The effect of ascorbic acid ingestion on the biochemical and physicochemical risk factors associated with calcium oxalate kidney stone formation. Clin Chem Lab Med 1998;36:143–147.
  • Menzel DB. The toxicity of air pollution in experimental animals and humans: the role of oxidative stress. Toxicol Lett 1994;72:269–277.
  • Carr A, Frei B. Does vitamin C act as a pro-oxidant under physiological conditions?. FASEB J 1999;13:1007–1024.
  • Moon JM, Chun BJ. The efficacy of high doses of vitamin C in patients with paraquat poisoning. Hum Exp Toxicol 2011; 30:844–850.
  • Du WD, Yuan ZR, Sun J, Tang JX, Cheng AQ, Shen DM, et al. Therapeutic efficacy of high-dose vitamin C on acute pancreatitis and its potential mechanisms. World J Gastroenterol 2003;9:2565–2569.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.