141
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Effects of oxidation on redox and cytotoxic properties of copper complex of Aβ1–16 peptide

, , , &
Pages 1417-1425 | Received 09 Jul 2014, Accepted 27 Aug 2014, Published online: 29 Sep 2014

References

  • Holm RH, Kennepohl P, Solomon EI. Structural and functional aspects of metal sites in biology. Chem Rev 1996; 96:2239–2314.
  • Halliwell B, Gutteridge JMC. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 1984;219:1–14.
  • Gaggelli E, Kozlowski H, Valensin D, Valensin G. Copper homeostasis and neurodegenerative disorders (Alzheimer's, Prion, and Parkinson's Diseases and Amyotrophic Lateral Sclerosis). Chem Rev 2006;106:1995–2044.
  • Sarkar B. Treatment of Wilson and Menkes diseases. Chem Rev 1999;99:2535–2544.
  • Smith DG, Cappai R, Barnham KJ. The redox chemistry of the Alzheimer's disease amyloid β peptide. Biochimica et Biophysica Acta – Biomembranes 2007;1768:1976–1990.
  • Atwood CS, Huang X, Moir RD, Tanzi RE, Bush AI. Role of free radicals and metal ions in the pathogenesis of Alzheimer's disease. Met Ions Biol Syst 1999;36:309–364.
  • Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR. Copper, iron and zinc in Alzheimer's disease senile plaques. J Neurol Sci 1998;158:47–52.
  • Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O’Halloran TV. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 1999; 284:805–807.
  • Syme SD, Nadal RC, Rigby SEJ, Viles JH. Copper binding to the Amyloid-β (Aβ) Peptide Associated with Alzheimer's disease: folding, coordination geometry, pH dependence, stoichiometry, and affinity of Aβ-(1–28): insights from a range of complementary spectroscopic techniques. J Biol Chem 2004;279:18169–18177.
  • Ginotra YP, Ramteke SN, Srikanth R, Kulkarni PP. Mass spectral studies reveal the structure of Aβ1 − 16− Cu2+ complex resembling ATCUN motif. Inorg Chem 2012;51:7960–7962.
  • Feaga HA, Maduka RC, Foster MN, Szalai VA. Affinity of Cu+ for the copper-binding domain of the amyloid-β peptide of Alzheimer's disease. Inorg Chem 2011;50: 1614–1618.
  • Huang X, Atwood CS, Hartshorn MA, Multhaup G, Goldstein LE, Scarpa RC, et al. The Aβ peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 1999;38:7609–7616.
  • Liu L, Jiang D, McDonald A, Hao Y, Millhauser G, Zhou F. Copper redox cycling in the prion protein depends critically on binding mode. J Am Chem Soc 2011;133:12229–12237.
  • Butterfield DA, Swomley AM, Sultana R. Amyloid β-peptide (1–42)-induced oxidative stressin Alzheimer disease: importance in disease pathogenesis and progression. Antioxid Redox Signal 2013;19:823–835.
  • Kowalik-Jankowska T, Ruta M, Wiśniewska K, Łankiewicz L, Dyba M. Products of Cu(II)-catalyzed oxidation in the presence of hydrogen peroxide of the 1-10, 1-16 fragments of human and mouse beta-amyloid peptide. J Inorg Biochem 2004;98:940–950.
  • Naslund J, Schierhorn A, Hellman U, Lannfelt L, Roses AD, Tjernberg LO, et al. Relative abundance of Alzheimer Aβ amyloid peptide variants in Alzheimer disease and normal aging. Proc Natl Acad Sci USA 1994;91:8378–8382.
  • Ramteke SN, Ginotra YP, Walke GR, Joshi BN, Kumbhar AS, Srikanth R, Kulkarni PP. Effects of oxidation on copper binding properties of Aβ1-16 peptide: a pulse radiolysis study. Free Radic Res 2013;47:1046–1053.
  • Cassagnes LE, Herve V, Nepveu F, Hureau C, Faller P, Collin F. The catalytically active copper-amyloid-beta state: coordination site responsible for reactive oxygen species production. Angew Chem Int Ed 2013;52:1–5.
  • Evans JF, Kuwana T. Introduction of functional groups onto carbon electrodes via treatment with radio-frequency plasmas. Anal Chem 1979;51:359.
  • Johnson GR, Nazhat NB, Saadalla-Nazhat RA. Reactions of the hydroxyl free radical with copper(I1)-amino-acid complexes in aqueous solution. J Chem Soc Faraday Trans 1 1989;85:677–689.
  • Meyerstein D. Trivalent copper. II. A pulse radiolytic study of the formation and decomposition of amino complexes. Inorg Chem 1971;10:2244–2249.
  • Kadlcik V, Roselli CS, Mattioli TA, Kodicek M, Houee-Levin C. One-electron oxidation of β -amyloid peptide: sequence modulation of reactivity. Free Radic Biol Med 2004;37:881–891.
  • Balland V, Hureau C, Saveant J. Electrochemical and homogeneous electron transfers to the Alzheimer amyloid-β copper complex follow a preorganization mechanism. PNAS 2010;107:17113–17118.
  • Nakamura M, Shishido N, Nunomura A, Smith MA, Perry G, Hayashi Y, et al. Three histidine residues of amyloid-beta peptide control the redox activity of copper and iron. Biochemistry 2007;46:12737–12743.
  • Smith DP, Smith DG, Curtain CC, Boas JF, Pilbrow JR, Ciccotosto GD, et al. Copper-mediated amyloid-β toxicity is associated with an Intermolecular Histidine Bridge. J Biol Chem 2006;281:15145–15154.
  • Huang X, Cuajungco MP, Atwood CS, Hartshorn MA, Tyndall JD, Hanson GR, et al. Cu(II) potentiation of Alzheimer Aβ neurotoxicity: correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem 1999;274:37111–37116.
  • Hensley K, Carney JM, Mattson MP, Aksenova M, Harris M, Wu JF, et al. A model for β-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc Natl Acad Sci U S A 1994;91:3270–3274.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.