191
Views
23
CrossRef citations to date
0
Altmetric
Research Article

New insights into the antioxidant activity of hydroxycinnamic and hydroxybenzoic systems: Spectroscopic, electrochemistry, and cellular studies

, , , , , & show all
Pages 1473-1484 | Received 28 Jun 2014, Accepted 11 Sep 2014, Published online: 14 Oct 2014

References

  • Edrey Y, Salmon A. Revisiting an age-old question regarding oxidative stress. Free Radic Biol Med 2014;71C: 368–378.
  • Uttara B, Singh A, Zamboni P, Mahajan R. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 2009;7:65–74.
  • Li J, Wuliji O, Li W, Jiang Z, Ghanbari H. Oxidative stress and neurodegenerative disorders. Int J Mol Sci 2013;14: 24438–24475.
  • Kim Y, Byzova T. Oxidative stress in angiogenesis and vascular disease. Blood 2014;123:625–631.
  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007;39:44–89.
  • Halliwell B, Gutteridge J. The definition and measurement of antioxidants in biological systems. Free Rad Biol Med 1995;18:125–126.
  • Nordberg J, Arnér E. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radical Biol Med 2001;31:1287–1312.
  • Lü J, Lin P, Yao Q, Chen C. Chemical and molecular mechanisms of antioxidants: experimental approaches and model system. J Cell Mol Med 2010;14:840–860.
  • Agati G, Azzarello E, Pollastri S, Tattini M. Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 2012;196:67–76.
  • Visioli F, Lastra C, Andres-Lacueva C, Aviram M, Calhau C, Cassano A, et al. Polyphenols and human health: a prospectus. Crit Rev Food Sci Nutr 2011;51:524–546.
  • Seifried H, Anderson D, Fisher E, Milner J. A review of the interaction among dietary antioxidants and reactive oxygen species. J Nutr Biochem 2007;18:567–579.
  • Pino E, Campos A, López-Alarcón C, Aspée A, Lissi E. Free radical scavenging capacity of hydroxycinnamic acids and related compounds. J Phys Org Chem 2006;19:759–764.
  • Narashimhan B, Belsare D, Pharande D, Mourya V, Dhake A. Esters, amides, and substituted derivatives of cinnamic acid: synthesis, antimicrobial activity and QSAR investigations. Eur J Med Chem 2004;39:827–834.
  • Kim E, Min K, Kwon T, Um B, Moreau R, Choi S. Anti-inflammatory activity of hydroxycinnamic acid derivatives isolated from corn bran in lipopolysaccharide-stimulated Raw 264.7 macrophages. Food Chem Toxicol 2012;50: 1309–1316.
  • Adisakwattana S, Sookkongwaree K, Roengsumran S, Petsom A, Ngamrojnavanich N, Chavasiri W, et al. Structure–activity relationships of trans-cinnamic acid derivatives on a-glucosidase inhibition. Bioorg Med Chem Lett 2004;14: 2893–2896.
  • Teixeira J, Silva T, Benfeito S, Gaspar A, Manuela Garrido E, Garrido J, Borges F. Exploring nature profits: development of novel and potent lipophilic antioxidants based on galloyl-cinnamic hybrids. Eur J Med Chem 2013;62:289–296.
  • Folch-Cano C, Jullian C, Speisky H, Olea-Azar C. Antioxidant activity of inclusion complexes of tea cathechins with β-cyclodextrins by ORAC assays. Food Res Int 2010;43: 2039–2044.
  • Matos M, Pérez-Cruz F, Vazquez-Rodriguez S, Uriarte E, Santana L, Borges F, Olea-Azar C. Remarkable antioxidant properties of a series of hydroxyl-3-arylcoumarins. Bioorg Med Chem 2013;21:3900–3906.
  • Ou B, Hampsch-Woodill M, Prior R. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 2001;49:4619–4626.
  • Alarcón E, Campos A, Edwards A, Lissi E, López-Alarcón C. Antioxidant capacity of herbal infusions and tea extracts: a comparison of ORAC-fluorescein and ORAC-pyrogallol red methodologies. Food Chem 2008;107:1114–1119.
  • Cao G, Alessio H, Cutler R. Oxygen-radical absorbance capacity assay for antioxidants. Free Rad Biol Med 1993; 14:303–311.
  • Niki E. Assessment of antioxidant capacity in vitro and in vivo. Free Rad Biol Med 2010;49:503–515.
  • López-Alarcón C, Denicola A. Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays. Anal Chim Acta 2013;763:1–10.
  • López-Alarcón C, Aspée A, Lissi E. Relevance of secondary processes in ORAC values obtained employing pyrogallol red as target molecule. J Chil Chem Soc 2009;54:12–13.
  • Nsangou M, Fifen J, Dhaouadi Z, Lahmar S. Hydrogen atom transfer in the reaction of hydroxycinnamic acids with •OH and •HO2 radicals: DFT study. J Mol Struct: THEOCHEM 2008;862:53–59.
  • López-Alarcón C, Lissi E. A novel and simple ORAC methodology based on the interaction of pyrogallol red with peroxyl radicals. Free Radical Res 2006;40:979–985.
  • Martin I, Aspée A, Torres P, Lissi E, López-Alarcón C. Influence of the target molecule on the oxygen radical absorbance capacity index: a comparison between alizarin red- and fluorescein-based methodologies. J Med Food 2009;12: 1386–1392.
  • Espinoza M, Olea-Azar C, Speisky H, Rodríguez J. Determination of reactions between free radicals and selected Chilean wines and transition metals by ESR and UV–vis technique. Spectrochim Acta A Mol Biomol Spectrosc 2009; 71:1638–1643.
  • Guo Q, Zhao B, Shen S, Hou J, Hu J, Xin W. ESR study on the structure–antioxidant activity relationship of tea catechins and their epimers. Biochim Biophys Acta 1999;1427: 13–23.
  • Musialik M, Litwinienko G. Scavenging of DPPH• radicals by vitamin E is accelerated by its partial ionization: the role of sequential proton loss electron transfer. Org Lett 2005;7: 4951–4954.
  • Foti M, Daquino C, Geraci C. Electron-transfer reaction of cinnamic acids and their methyl esters with the DPPH• radical in alcoholic solutions. J Org Chem 2004;69:2309–231.
  • Prior R, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in goods and dietary supplements. J Agric Food Chem 2005;53: 4290–4302.
  • Veselinovic J, Veselinovic A, Vitnik Z, Vitnik D, Nikolic G. Antioxidant properties of selected 4-hydroxucoumarins: integrated in vitro an computational studies. Chem Biol Interact 2014;214:49–56.
  • Nicholson RS, Shain I. Theory of stationary electrode polarography: single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal Chem 1964;36: 706–723.
  • Sochor J, Dobes J, Krystofova O, Ruttkay B, Babula P, Pohanka M, et al. Electrochemistry as a tool for studying antioxidant properties. Int J Electrochem Sci 2013;8:8464–8489.
  • Hotta H, Ueda M, Nagano S, Tsujino Y, Koyama J, Osakai T. Mechanistic study of the oxidation of caffeic acid by digital simulation of cyclic voltammograms. Anal Biochem 2002;303:66–72.
  • Petrucci R, Astolfi P, Greci L, Firuzi O, Saso L, Marrosu M. A spectroelectrochemical and chemical study on oxidation of hydroxycinnamic acids in aprotic medium. Electrochim Acta 2007;52:2461–2470.
  • Hapiot P, Neudeck A, Pinson J, Fulcrand H, Neta P, Rolando C. Oxidation of caffeic acid and related hydroxycinnamic acids. J Electroanal Chem 1996:405;169–176.
  • Maegawa Y, Sugino K, Sakura H. Identification of free radical species derived from caffeic acid and related polyphenols. Free Rad Res 2007;41:110–119.
  • Eslami A, Pasanphan W, Wagner B, Buettner G. Free radicals produced by the oxidation of gallic acid: an electron paramagnetic resonance study. Chem Central J 2010;4:15.
  • Janeiro P, Novak I, Seruga M, Oliveira-Brett A. Electroanalytical oxidation of p-coumaric acid. Anal Lett 2007;40: 3309–3321.
  • McIntyre G, Blount N, Stronks H, Shetty R, Janzen E. Spin trapping in electrochemistry: aqueous and nonaqueous electrochemical. J Phys Chem 1980;84:916.
  • Stoyanovsky D, Melnikov Z, Cederbaum A. ESR and HPLC-EC analysis of the interaction of hydroxyl radical with DMSO: rapid reduction and quantification of POBN and PBN nitroxides. Anal Chem 1999;71:715–721.
  • Wang H, Joseph J. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate-reader. Free Rad Biol Med 1999;27:612–616.
  • Bartosz G. Use of spectroscopic probes for detection of reactive oxygen species. Clin Chim Act 2006;368:53–76.
  • Yoshioka H, Ohashi Y, Fukuda H, Senba Y, Yoshioka H. Spectral simulation of the ESR spectra of polyphenol radicals formed by reaction with hydroxyl radical. J Phys Chem A 2003;107:1127–1132.
  • Oniki T, Takahama U. Free radicals produced by the oxidation of gallic acid and catechin derivatives. J Wood Sci 2004;50: 545–547.
  • Bors W, Michel C, Stettmaier K, Lu Y, Foo L. Antioxidant mechanisms of polyphenolic caffeic acid oligomers, constituents of Salvia officinalis. Biol Res 2004;37:301–311.
  • LeBel C, Ischiropoulos H, Bondy S. Evaluation of the probe 2,7-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 1992;5:227–231.
  • Lino F, de Sá L, Torres I, Rocha M, Dinis T, Ghedini P, et al. Voltammetric and spectrometric determination of antioxidant capacity of selected wines. Electrochim Act 2014;128:25–31.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.