173
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Abortion-prone mating influences placental antioxidant status and adversely affects placental and foetal development

, , , &
Pages 1505-1513 | Received 20 May 2014, Accepted 16 Sep 2014, Published online: 14 Oct 2014

References

  • Teklenburg G, Salker M, Heijnen C, Macklon NS, Brosens JJ. The molecular basis of recurrent pregnancy loss: impaired natural embryo selection. Mol Hum Reprod 2010;16: 886–895.
  • Jezek P, Hlavatá L. Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int J Biochem Cell Biol 2005;37:2478–2503.
  • Al-Gubory KH, Fowler PA, Garrel C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int J Biochem Cell Biol 2010;42:1634–1650.
  • Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S. The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol 2012;10:49.
  • Agarwal A, Allamaneni SSR. Role of free radicals in female reproductive diseases and assisted reproduction. Reprod Biomed Online 2004;9:338–437.
  • Gupta S, Agarwal A, Banerjee J, Alvarez J. The role of oxidative stress in spontaneous abortion and recurrent pregnancy loss: a systematic review. Obstet Gynecol.Surv 2007;62:335–347.
  • McCord I, Fridovich JM. Superoxide dismutase. An enzymatic function for erythrocuprein. J Biol Chem 1969; 244:6049–6055.
  • Weisiger RA, Fridovich I. Mitochondrial superoxide dismutase. Site of synthesis and intramitochondrial localisation. J Biol Chem 1973;248:4791–4793.
  • Hayes JD, McLellan LI. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res 1993;1:273–300.
  • Michiels C, Raes M, Toussaint O, Remacle J. Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic Biol Med 1994; 17:235–248.
  • Chance B, Sies H, Boveris A. Hydroperoxide metabolism in mammalian organs. Physiol Rev 1979;59:527–605.
  • Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 2001; 30:1191–1212.
  • Cross JC. Placental function in development and disease. Reprod Fertil Dev 2006;18:71–76.
  • Miller SL, Wallace EM, Walker DW. Antioxidant therapies: a potential role in perinatal medicine. Neuroendocrinology 2012;96:13–23.
  • Al-Gubory KH. Maternal nutrition, oxidative stress and prenatal developmental outcomes. In: Agarwal A, Rizk B, Aziz N (eds.). Studies on Women's Health, Oxidative Stress in Applied Basic Research and Clinical Practice. New York: Springer Science and Business Media, Humana Press Inc; 2013. pp. 1–31.
  • Andriantsitohaina R, Auger C, Chataigneau T, Étienne-Selloum N, Li H, Martínez MC, et al. Molecular mechanisms of the cardiovascular protective effects of polyphenols. Br J Nutr 2012;108:1532–1549.
  • Andriantsitohaina R, Duluc L, García-Rodríguez JC, Gil-del Valle L, Guevara-Garcia M, Simard G, et al. Systems biology of antioxidants. Clin Sci (London) 2012; 123:173–192.
  • Strakovsky RS, Pan YX. In utero oxidative stress epigenetically programs antioxidant defense capacity and adulthood diseases. Antioxid Redox Signal 2012;17:237–253.
  • Chaouat G, Menu E, Clark DA, Dy M, Minkowski M, Wegmann TG. Control of fetal survival in CBA x DBA/2 mice by lymphokine therapy. J Reprod Fertil 1990;89:447–458.
  • Slapsys R, Clark DA. Active suppression of host-versus-graft reaction in pregnant mice. V. Kinetics, specificity, and in vivo activity of non-T suppressor cells localized to the genital tract of mice during first pregnancy. Am J Reprod Immunol 1983;3:65–71.
  • Clark DA, Chaput A, Tutton D. Active suppression of host-vs-graft reaction in pregnant mice. VII. Spontaneous abortion of allogeneic CBA/J x DBA/2 fetuses in the uterus of CBA/J mice correlates with deficient non-T suppressor cell activity. J Immunol 1986;136:1668–1675.
  • Bonney EA, Brown SA. To drive or be driven: the path of a mouse model of recurrent pregnancy loss. Reproduction 2014;147:R153–R167.
  • Junovich G, Dubinsky V, Gentile T, Sarto A, Pasqualini S, Gutiérrez G. Comparative immunological effect of anticoagulant and antioxidant therapy in the prevention of abortion in mice. Am J Reprod Immunol 2011;65:104–109.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RF. Protein measurement with folin phenol reagent. J Biol Chem 1951;193:265–275.
  • Garrel C, Fowler PA, Al-Gubory KH. Developmental changes in antioxidant enzymatic defences against oxidative stress in sheep placentomes. J Endocrinol 2010;205: 107–116.
  • Al-Gubory KH, Garrel C. Antioxidative signalling pathways regulate the level of reactive oxygen species at the endometrial-extraembryonic membranes interface during early pregnancy. Int J Biochem Cell Biol 2012;44:1511–1518.
  • Garrel C, Alessandri JM, Guesnet P, Al-Gubory KH. Omega-3 fatty acids enhance mitochondrial superoxide dismutase activity in rat organs during post-natal development. Int J Biochem Cell Biol 2012;44:123–131.
  • Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 1974; 47:469–474.
  • Jin ZQ, Zhou HZ, Cecchini G, Gray MO, Karliner JS. MnSOD in mouse heart: acute responses to ischemic preconditioning and ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2005;288:H2986–H2994.
  • Nzengue Y, Steiman R, Garrel C, Lefèbvre E, Guiraud P. Oxidative stress and DNA damage induced by cadmium in the human keratinocyte HaCaT cell line: role of glutathione in the resistance to cadmium. Toxicology 2008;243: 193–206.
  • Akerboom TP, Sies H. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol 1981;77:373–382.
  • Londero D, Lo Greco P. Automated high-performance liquid chromatographic separation with spectrofluorometric detection of a malondialdehyde-thiobarbituric acid adduct in plasma. J Chromatogr A 1996;729:207–210.
  • Sekiba K, Yoshioka T. Changes of lipid peroxidation and superoxide dismutase activity in the human placenta. Am J Obstet Gynecol 1979;135:368–371.
  • Takehara Y, Yoshioka T, Sasaki J. Changes in the levels of lipoperoxide and antioxidant factors in human placenta during gestation. Acta Med Okayama 1990;44:103–111.
  • Qanungo S, Sen A, Mukherjea M. Antioxidant status and lipid peroxidation in human feto-placental unit. Clin Chim Acta 1999;285:1–12.
  • Qanungo S, Mukherjea M. Ontogenic profile of some antioxidants and lipid peroxidation in human placental and fetal tissues. Mol Cell Biochem 2000;215:11–19.
  • Al-Gubory KH, Garrel C, Delatouche L, Heyman Y, Chavatte P. Antioxidant adaptive responses of extraembryonic tissues from cloned and non-cloned bovine conceptuses to oxidative stress during early pregnancy. Reproduction 2010;140:175–181.
  • Scifres CM, Nelson DM. Intrauterine growth restriction, human placental development and trophoblast cell death. J Physiol (Lond) 2009;587:3453–3458.
  • Kimura C, Watanabe K, Iwasaki A, Mori T, Matsushita H, Shinohara K, Wakatsuki A. The severity of hypoxic changes and oxidative DNA damage in the placenta of early-onset preeclamptic women and fetal growth restriction. J Matern Fetal Neonatal Med 2013;26:491–496.
  • Halliwell B, Chirico S. Lipid peroxidation: its mechanisms, measurement, and significance. Am J Clin Nutr 1993;57: 715S–7125.
  • Kehrer JP. The Haber–Weiss reaction and mechanisms of toxicity. Toxicology 2000;149:43–50.
  • Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine, 4th ed. Oxford: Clarendon Press; 2007.
  • Koppenol WH, Moreno JJ, Pryor WA, Ischiropoulos H, Beckman JS. Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol 1992;5: 834–842.
  • Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitriteinduced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 1991; 288:481–487.
  • Ho YS, Gargano M, Cao J, Bronson RT, Heimler I, Hutz RJ. Reduced fertility in female mice lacking copper-zinc superoxide dismutase. J Biol Chem 1998;273:7765–7769.
  • Yon JM, Baek IJ, Lee SR, Jin Y, Kim MR, Nahm SS, et al. The spatio-temporal expression pattern of cytoplasmic Cu/Zn superoxide dismutase (SOD1) mRNA during mouse embryogenesis. J Mol Histol 2008;39:95–103.
  • Yon JM, Baek IJ, Lee SR, Kim MR, Lee BJ, Yun YW, Nam SY. Immunohistochemical identification and quantitative analysis of cytoplasmic Cu/Zn superoxide dismutase in mouse organogenesis. J Vet Sci 2008;9:233–240.
  • Carrico RJ, Deutsch HF. The presence of zinc in human cytocuprein and some properties of the apoprotein. J Biol Chem 1970; 245:723–727.
  • Forman HJ, Fridovich I. On the stability of bovine superoxide dismutase. The effects of metals. J Biol Chem 1973;248: 2645–2649.
  • Günther T, Höllriegl V. Lipid peroxidation in mitochondria and microsomes from adult and fetal rat tissues. Effects of Zn deficiency, Fe, and salicylate. Biol Trace Elem Res 1989;22:165–177.
  • Hawk SN, Uriu-Hare JY, Daston GP, Jankowski MA, Kwik-Uribe C, Rucker RB, Keen CL. Rat embryos cultured under copper-deficient conditions develop abnormally and are characterized by an impaired oxidant defense system. Teratology 1998;57:310–320.
  • Beckers-Trapp ME, Lanoue L, Keen CL, Rucker RB, Uriu-Adams JY. Abnormal development and increased 3-nitrotyrosine in copper-deficient mouse embryos. Free Radic Biol Med 2006;40:35–44.
  • Hawk SN, Lanoue L, Keen CL, Kwik-Uribe CL, Rucker RB, Uriu-Adams JY. Copper-deficient rat embryos are characterized by low superoxide dismutase activity and elevated superoxide anions. Biol Reprod 2003;68:896–903.
  • Helston RM, Phillips SR, McKay JA, Jackson KA, Mathers JC, Ford D. Zinc transporters in the mouse placenta show a coordinated regulatory response to changes in dietary zinc intake. Placenta 2007;28:437–444.
  • Ruder EH, Hartman TJ, Blumberg J, Goldman B. Oxidative stress and antioxidants: exposure and impact on female fertility. Hum Reprod Update 2008;14:345–357.
  • Wu G, Imhoff-Kunsch B, Girard AW. Biological mechanisms for nutritional regulation of maternal health and fetal development. Paediatr Perinat Epidemiol 2012;26:4–26.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.