1,575
Views
54
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Lipid oxidation in the skin

Pages 827-834 | Received 26 Aug 2014, Accepted 09 Oct 2014, Published online: 11 Nov 2014

References

  • Terao J, Minami Y, Bando N. Singlet molecular oxygen-quenching activity of carotenoids: relevance to protection of the skin from photoaging. J Clin Biochem Nutr 2011;48: 57–62.
  • Krutmann J, Morita A, Chung JH. Sun exposure: what molecular photodermatology tells us about its good and bad sides. J Invest Dermatol 2012;132:976–984.
  • Pattison DI, Rahmanto AS, Davies MJ. Photo-oxidation of proteins. Photochem Photobiol Sci 2012;11:38–53.
  • Thurstan SA, Gibbs NK, Langton AK, Griffiths CE, Watson RE, Sherratt MJ. Chemical consequences of cutaneous photoageing. Chem Cent J 2012;6:34.
  • Bickers DR, Athar M. Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol 2006;126:2565–2575.
  • Nicolaou A, Masoodi M, Gledhill K, Haylett AK, Thody AJ, Tobin DJ, Rhodes LE. The eicosanoid response to high dose UVR exposure of individuals prone and resistant to sunburn. Photochem Photobiol Sci 2012;11:371–380.
  • Rhodes LE, Gledhill K, Masoodi M, Haylett AK, Brownrigg M, Thody AJ, et al. The sunburn response in human skin is characterized by sequential eicosanoid profiles that may mediate its early and late phases. FASEB J 2009;23:3947–3956.
  • Nishigori C, Hattori Y, Toyokuni S. Role of reactive oxygen species in skin carcinogenesis. Antioxid Redox Signal 2004;6:561–570.
  • Nicolaides N. Skin lipids: their biochemical uniqueness. Science 1974;186:19–26.
  • Smith KR, Thiboutot DM. Thematic review series: skin lipids. Sebaceous gland lipids: friend or foe? J Lipid Res 2008;49:271–281.
  • Pappas A. Epidermal surface lipids. Dermatoendocrinol 2009;1:72–76.
  • Huang ZR, Lin YK, Fang JY. Biological and pharmacological activities of squalene and related compounds: potential uses in cosmetic dermatology. Molecules. 2009;14:540–554.
  • Pappas A, Fantasia J, Chen T. Age and ethnic variations in sebaceous lipids. Dermatoendocrinol 2013;5:319–324.
  • De Luca C, Valacchi G. Surface lipids as multifunctional mediators of skin responses to environmental stimuli. Mediators Inflamm 2010;2010:321494.
  • Camera E, Ludovici M, Galante M, Sinagra JL, Picardo M. Comprehensive analysis of the major lipid classes in sebum by rapid resolution high-performance liquid chromatography and electrospray mass spectrometry. J Lipid Res 2010;51:3377–3388.
  • Nakagawa K, Ibusuki D, Suzuki Y, Yamashita S, Higuchi O, Oikawa S, Miyazawa T. Ion-trap tandem mass spectrometric analysis of squalene monohydroperoxide isomers in sunlight-exposed human skin. J Lipid Res 2007;48:2779–2787.
  • Ní Raghallaigh S, Bender K, Lacey N, Brennan L, Powell FC. The fatty acid profile of the skin surface lipid layer in papulopustular rosacea. Br J Dermatol 2012;166:279–287.
  • Krakow R, Downing DT, Strauss JS, Pochi PE. Identification of a fatty acid in human skin surface lipids apparently associated with acne vulgaris. J Invest Dermatol. 1973;61: 286–289.
  • Morello AM, Downing DT, Strauss JS. Octadecadienoic acids in the skin surface lipids of acne patients and normal subjects. J Invest Dermatol 1976;66:319–323.
  • Passi S, De Pità O, Puddu P, Littarru GP. Lipophilic antioxidants in human sebum and aging. Free Radic Res 2002;36:471–477.
  • Stewart ME, Grahek MO, Cambier LS, Wertz PW, Downing DT. Dilutional effect of increased sebaceous gland activity on the proportion of linoleic acid in sebaceous wax esters and in epidermal acylceramides. J Invest Dermatol 1986;87:733–736.
  • Charman CR, Ryan A, Tyrrell RM, Pearse AD, Arlett CF, Kurwa HA, et al. Photosensitivity associated with the Smith-Lemli-Opitz syndrome. Br J Dermatol 1998;138:885–888.
  • Fitzky BU, Witsch-Baumgartner M, Erdel M, Lee JN, Paik YK, Glossmann H, et al. Mutations in the Delta7-sterol reductase gene in patients with the Smith Lemli Opitz syndrome. Proc Natl Acad Sci USA 1998;95:8181–8186.
  • Grether-Beck S, Krutmann J. Involvement of lipid rafts and caveolins in UVA signaling. Open Dermatol J 2009; 3:153–159.
  • Xu L, Porter NA. Reactivities and products of free radical oxidation of cholestadienols. J Am Chem Soc 2014;136: 5443–5450.
  • Chapkin RS, Ziboh VA, Marcelo CL, Voorhees JJ. Metabolism of essential fatty acids by human epidermal enzyme preparations: evidence of chain elongation. J Lipid Res 1986;27:945–954.
  • Niki E. Lipid peroxidation: physiological levels and dual biological effects. Free Radic Biol Med 2009;47:469–484.
  • Grune T, ed. Special issue on lipid peroxidation: measurement, consequences and prevention. Free Radic Res 2010;44:1095–1262.
  • Yin H, Xu L, Porter NA. Free radical lipid peroxidation: mechanisms and analysis. Chem Rev 2011;111:5944–5972.
  • Ziboh VA, Cho Y, Mani I, Xi S. Biological significance of essential fatty acids/prostanoids/lipoxygenase-derived monohydroxy fatty acids in the skin. Arch Pharm Res 2002;25:747–758.
  • Baer AN, Klaus MV, Green FA. Epidermal fatty acid oxygenases are activated in non-psoriatic dermatoses. J Invest Dermatol 1995;104:251–255.
  • Brash AR, Yu Z, Boeglin WE, Schneider C. The hepoxilin connection in the epidermis. FEBS J 2007;274:3494–3502.
  • Zheng Y, Yin H, Boeglin WE, Elias PM, Crumrine D, Beier DR, Brash AR. Lipoxygenases mediate the effect of essential fatty acid in skin barrier formation: a proposed role in releasing omega-hydroxyceramide for construction of the corneocyte lipid envelope. J Biol Chem 2011;286:24046–24056.
  • Krieg P, Fürstenberger G. The role of lipoxygenases in epidermis. Biochim Biophys Acta 2014;1841:390–400.
  • Muñoz-Garcia M, Thomas CP, Keeney DS, Zheng Y, Brash AR. The importance of the lipoxygenase-hepoxilin pathway in the mammalian epidermal barrier. Biochim Biophys Acta 2014;1841:401–408.
  • Cossette C, Patel P, Anumolu JR, Sivendran S, Lee GJ, Gravel S, et al. Human neutrophils convert the sebum-derived polyunsaturated fatty acid Sebaleic acid to a potent granulocyte chemoattractant. J Biol Chem 2008;283:11234–11243.
  • Pilkington SM, Rhodes LE, Al-Aasswad NM, Massey KA, Nicolaou A. Impact of EPA ingestion on COX- and LOX- mediated eicosanoid synthesis in skin with and without a pro-inflammatory UVR challenge–report of a randomised controlled study in humans. Mol Nutr Food Res 2014;58: 580–590.
  • Girotti AW, Kriska T. Role of lipid hydroperoxides in photo-oxidative stress signaling. Antioxid Redox Signal 2004;6:301–310.
  • Foote CS. Definition of type-I and type-II photosensitized oxidation. Photochem Photobiol 1991;54:659.
  • Terao J, Matsushita S. Products formed by photosensitized oxidation of unsaturated fatty acid esters. J Am Oil Chem Soc 1977;54:234–238.
  • Frankel EN. Chemistry of free radical and singlet oxidation of lipids. Prog Lipid Res 1984;23:97–221.
  • Korytowski W, Schmitt JC, Girotti AW. Surprising inability of singlet oxygen-generated 6-hydroperoxycholesterol to induce damaging free radical lipid peroxidation in cell membranes. Photochem Photobiol 2010;86:747–751.
  • Hui SP, Yoshimura T, Murai T, Chiba H, Kurosawa T. Determination of regioisomeric hydroperoxides of fatty acid cholesterol esters produced by photosensitized peroxidation using HPLC. Anal Sci 2000;16:1023–1028.
  • Pryor WA, Squadrito GL, Friedman M. The cascade mechanism to explain ozone toxicity: the role of lipid ozonation products. Free Radic Biol Med 1995;19:935–941.
  • Thiele JJ, Podda M, Packer L. Tropospheric ozone: an emerging environmental stress to skin. Biol Chem 1997; 378:1299–1305.
  • Fruekilde P, Hjorth J, Jensen NR, Kotzias D, Larsen B. Ozonolysis at vegetation surfaces: A source of acetone, 4-oxopentanal, 6-methyl-5-hepten-2-one, and geranyl acetone in the troposphere. Atmos Environ 1998;32:1893–1902.
  • Wisthaler A, Weschler CJ. Reactions of ozone with human skin lipids: sources of carbonyls, dicarbonyls, and hydroxycarbonyls in indoor air. Proc Natl Acad Sci USA 2010;107: 6568–6575.
  • Gumulka J, Smith LL. Ozonization of cholesterol. J Am Chem Soc 1983;105:1972–1979.
  • Wang K, Bermúdez E, Pryor WA. The ozonation of cholesterol: separation and identification of 2,4-dinitrophenylhydrazine derivatization products of 3 beta-hydroxy-5-oxo-5,6-secocholestan-6-al. Steroids 1993;58:225–229.
  • Miyoshi N, Iwasaki N, Tomono S, Higashi T, Ohshima H. Occurrence of cytotoxic 9-oxononanoyl secosterol aldehydes in human low-density lipoprotein. Free Radic Biol Med 2013;60:73–79.
  • Uemi M, Ronsein GE, Miyamoto S, Medeiros MH, Di Mascio P. Generation of cholesterol carboxyaldehyde by the reaction of singlet molecular oxygen [O2 (1Delta(g))] as well as ozone with cholesterol. Chem Res Toxicol 2009;22:875–884.
  • Tomono S, Miyoshi N, Sato K, Ohba Y, Ohshima H. Formation of cholesterol ozonolysis products through an ozone-free mechanism mediated by the myeloperoxidase-H2O2-chloride system. Biochem Biophys Res Commun 2009;383:222–227.
  • Brinkhorst J, Nara SJ, Pratt DA. Hock cleavage of cholesterol 5alpha-hydroperoxide: an ozone-free pathway to the cholesterol ozonolysis products identified in arterial plaque and brain tissue. J Am Chem Soc 2008;130:12224–12225.
  • Terao J. Cholesterol hydroperoxides and their degradation mechanism. Subcell Biochem 2014;77:83–91.
  • Miyoshi N, Iuliano L, Tomono S, Ohshima H. Implications of cholesterol autoxidation products in the pathogenesis of inflammatory diseases. Biochem Biophys Res Commun 2014;446:702–708.
  • Pryor WA, Houk KN, Foote CS, Fukuto JM, Ignarro LJ, Squadrito GL, Davies KJ. Free radical biology and medicine: it's a gas, man! Am J Physiol Regul Integr Comp Physiol 2006;291:R491–511.
  • Freeman BA, Baker PR, Schopfer FJ, Woodcock SR, Napolitano A, d’Ischia M. Nitro-fatty acid formation and signaling. J Biol Chem 2008;283:15515–15519.
  • Tsikas D, Zoerner AA, Jordan J. Oxidized and nitrated oleic acid in biological systems: analysis by GC-MS/MS and LC-MS/MS, and biological significance. Biochim Biophys Acta 2011;1811:694–705.
  • Hensley K, Williamson KS, Floyd RA. Measurement of 3-nitrotyrosine and 5-nitro-gamma-tocopherol by high- performance liquid chromatography with electrochemical detection. Free Radic Biol Med 2000;28:520–528.
  • Terra VA, Souza-Neto FP, Pereira RC, Xavier Da Silva TN, Ramalho LN, Luiz RC, et al. Nitric oxide is responsible for oxidative skin injury and modulation of cell proliferation after 24 hours of UVB exposures. Free Radic Res 2012; 46:872–882.
  • Wilkinson F, Brummer JG. Rate constants for the decay and reactions of the lowest excited singlet state of molecular oxygen in solution. J Phys Chem Ref Data 1981;10:809–999.
  • Di Mascio P, Murphy ME, Sies H. Antioxidant defense systems: the role of carotenoids, tocopherols, and thiols. Am J Clin Nutr 1991;53:194S–200S.
  • Simic MG, Jovanovic SV, Niki E. Mechanisms of lipid oxidative processes and their inhibition. ACS Chem Ser 1992;500:14–32.
  • Mukai K, Ishikawa E, Ouchi A, Nagaoka SI, Suzuki T, Izumisawa K, Koike T. Kinetic study of the quenching reaction of singlet oxygen by α-, β-, γ-, δ-tocotrienols, and palm oil and soybean extracts in solution. Biosci Biotechnol Biochem 2014:1–13.
  • Niki E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radic Biol Med 2014;66:3–12.
  • Huie RE. The reaction kinetics of NO2. Toxicology 1994;89:193–216.
  • Chatgilialoglu C, Ferreri C, Melchiorre M, Sansone A, Torreggiani A. Lipid geometrical isomerism: From chemistry to biology and diagnostics. Chem Rev 2014;114:255–284.
  • Prütz WA, Mönig H, Butler J, Land EJ. Reactions of nitrogen dioxide in aqueous model systems: oxidation of tyrosine units in peptides and proteins. Arch Biochem Biophys 1985;243:125–134.
  • Doleiden FH, Fahrenholtz SR, Lamola AA, Trozzolo AM. Reactivity of cholesterol and some fatty acids toward singlet oxygen. Photochem Photobiol 1974;20:519–521.
  • Vever-Bizet C, Dellinger M, Brault D, Rougee M, Bensasson RV. Singlet molecular oxygen quenching by saturated and unsaturated fatty-acids and by cholesterol. Photochem Photobiol 1989;50:321–325.
  • Kohno Y, Egawa Y, Itoh S, Nagaoka S, Takahashi M, Mukai K. Kinetic study of quenching reaction of singlet oxygen and scavenging reaction of free radical by squalene in n-butanol. Biochim Biophys Acta 1995;1256:52–56.
  • Ryu A, Arakane K, Koide C, Arai H, Nagano T. Squalene as a target molecule in skin hyperpigmentation caused by singlet oxygen. Biol Pharm Bull 2009;32:1504–1509.
  • Sprung JL, Akimoto H, Pitts JN. Nitrogen dioxide catalyzed geometric isomerization of olefins. Isomerization kinetics of the 2-butenes and the 2-pentenes. J Am Chem Soc 1974;96:6549–6554.
  • Jaffe S, Wan E. Thermal and photochemical reaction of NO2 with butyraldehyde in gas phase. Environ Sci Technol 1974;8:1024–1025.
  • Someya K, Totsuka Y, Murakoshi M, Kitano H, Miyazawa T. The antioxidant effect of palm fruit carotene on skin lipid peroxidation in guinea pigs as estimated by chemiluminescence-HPLC method. J Nutr Sci Vitaminol 1994; 40:315–324.
  • Yamazaki S, Ozawa N, Hiratsuka A, Watabe T. Photogeneration of 3beta-hydroxy-5alpha-cholest-6-ene-5-hydroperoxide in rat skin: evidence for occurrence of singlet oxygen in vivo. Free Radic Biol Med 1999;27:301–308.
  • Minami Y, Yokoi S, Setoyama M, Bando N, Takeda S, Kawai Y, Terao J. Combination of TLC blotting and gas chromatography-mass spectrometry for analysis of peroxidized cholesterol. Lipids 2007;42:1055–1063.
  • Minami Y, Yokoyama K, Bando N, Kawai Y, Terao J. Occurrence of singlet oxygen oxygenation of oleic acid and linoleic acid in the skin of live mice. Free Radic Res 2008;42:197–204.
  • Tahara S, Matsuo M, Kaneko T. Age-related changes in oxidative damage to lipids and DNA in rat skin. Mech Ageing Dev 2001;122:415–426.
  • Kohno Y, Sakamoto O, Tomita K, Horii I, Miyazawa T. Determination of human skin surface lipid peroxides by chemiluminescence-HPLC. J Jpn Oil Chem Soc 1991;40:715–718.
  • Kohno Y, Sakamoto O, Nakamura T, Miyazawa T. Determination of human skin surface lipid peroxides by chemiluminescence-HPLC. II. Detection of squalene hydroperoxide. J JPN Oil Chem Soc 1993;42:204–209.
  • Hayashi N, Togawa K, Yanagisawa M, Hosogi J, Mimura D, Yamamoto Y. Effect of sunlight exposure and aging on skin surface lipids and urate. Exp Dermatol 2003;12 Suppl 2: 13–17.
  • Mudiyanselage SE, Hamburger M, Elsner P, Thiele JJ. Ultraviolet A induces generation of squalene monohydroperoxide isomers in human sebum and skin surface lipids in vitro and in vivo. J Invest Dermatol 2003;120:915–922.
  • Egawa M, Kohno Y, Kumano Y. Oxidative effects of cigarette smoke on the human skin. Int J Cosmet Sci 1999; 21:83–98.
  • Niki E. Biomarkers of lipid peroxidation in clinical material. Biochim Biophys Acta 2014;1840:809–817.
  • Saint-Leger D, Bague A, Lefebvre E, Cohen E, Chivot M. A possible role for squalene in the pathogenesis of acne. II. In vivo study of squalene oxides in skin surface and intra-comedonal lipids of acne patients. Br J Dermatol 1986; 114:543–552.
  • Grundmann JU, Wiswedel I, Hirsch D, Gollnick HP. Detection of monohydroxyeicosatetraenoic acids and F2-isoprostanes in microdialysis samples of human UV-irradiated skin by gas chromatography-mass spectrometry. Skin Pharmacol Physiol 2004;17:37–41.
  • Kuhn M, Wolber R, Kolbe L, Schnorr O, Sies H. Solar- simulated radiation induces secretion of IL-6 and production of isoprostanes in human skin in vivo. Arch Dermatol Res 2006;297:477–479.
  • Schneider LA, Bloch W, Kopp K, Hainzl A, Rettberg P, Wlaschek M, Horneck G. Scharffetter-Kochanek K. 8-Isoprostane is a dose-related biomarker for photo-oxidative ultraviolet (UV) B damage in vivo: a pilot study with personal UV dosimetry. Br J Dermatol 2006;154:1147–1154
  • Belli R, Amerio P, Brunetti L, Orlando G, Toto P, Proietto G, et al. Elevated 8-isoprostane levels in basal cell carcinoma and in UVA irradiated skin. Int J Immunopathol Pharmacol 2005;18:497–502.
  • Bayer M, Mosandl A, Thaçi D. Improved enantioselective analysis of polyunsaturated hydroxy fatty acids in psoriatic skin scales using high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 819:323–328.
  • Guéraud F, Atalay M, Bresgen N, Cipak A, Eckl PM, Huc L, et al. Chemistry and biochemistry of lipid peroxidation products. Free Radic Res 2010;44:1098–1124.
  • Tanaka N, Tajima S, Ishibashi A, Uchida K, Shigematsu T. Immunohistochemical detection of lipid peroxidation products, protein-bound acrolein and 4-hydroxynonenal protein adducts, in actinic elastosis of photodamaged skin. Arch Dermatol Res 2001;293:363–367.
  • Yamazaki S, Ozawa N, Hiratsuka A, Watabe T. Increases in cholesterol 7-hydroperoxides in lipids of human skin by sunlight exposure. Free Radic Biol Med 1999;26:1126–1133.
  • Morello AM, Downing DT. Trans-unsaturated fatty acids in human skin surface lipids. J Invest Dermatol 1976;67: 270–272.
  • Skolová B, Jandovská K, Pullmannová P, Tesař O, Roh J, Hrabálek A, Vávrová K. The role of the trans double bond in skin barrier sphingolipids: permeability and infrared spectroscopic study of model ceramide and dihydroceramide membranes. Langmuir 2014;30:5527–5535.
  • Barcelos RC, Segat HJ, Benvegnú DM, Trevizol F, Roversi K, Dolci GS, et al. Trans fat supplementation increases UV-radiation-induced oxidative damage on skin of mice. Lipids 2013;48:977–987.
  • Barcelos RC, Vey LT, Segat HJ, Roversi K, Roversi K, Dias VT, et al. Cross-generational trans fat intake exacerbates UV radiation-induced damage in rat skin. Food Chem Toxicol 2014;69:38–45.
  • Sansone A, Melchiorre M, Chatgilialoglu C, Ferreri C. Hexadecenoic fatty acid isomers: a chemical biology approach for human plasma biomarker development. Chem Res Toxicol 2013;26:1703–1709.
  • Halliwell B, Lee CY. Using isoprostanes as biomarkers of oxidative stress: some rarely considered issues. Antioxid Redox Signal 2010;13:145–156.
  • Yoshida Y, Umeno A, Shichiri M. Lipid peroxidation biomarkers for evaluating oxidative stress and assessing anti-oxidant capacity in vivo. J Clin Biochem Nutr 2013;52:9–16.
  • Thomas JP, Maiorino M, Ursini F, Girotti AW. Protective action of phospholipid hydroperoxide glutathione peroxidase against membrane-damaging lipid peroxidation. In situ reduction of phospholipid and cholesterol hydroperoxides. J Biol Chem 1990;265:454–461.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.