188
Views
7
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Effect of (-)-epigallocatechin-3-gallate on glucose-induced human serum albumin glycation

&
Pages 946-953 | Received 29 Oct 2014, Accepted 03 Feb 2015, Published online: 20 Mar 2015

References

  • Singh BN, Shankar S, Srivastava RK. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochem Pharmacol 2011;82: 1807–1821.
  • Thielecke F, Boschmann M. The potential role of green tea catechins in the prevention of the metabolic syndrome - A review. Phytochemistry 2009;70:11–24.
  • Hagerman AE, Riedl KM, Rice RE. Tannins as biological antioxidants. In: Gross GG, Hemingway RW, Yoshida T, (eds.). Plant Polyphenols 2: Chemistry, Biology, Pharmacology, Ecology. New York: Kluwer Academic/Plenum; 1999. pp. 495–505.
  • Montonen J, Knekt P, Jarvinen R, Reunanen A. Dietary antioxidant intake and risk of type 2 diabetes. Diabetes Care 2004;27:362–366.
  • Sang S, Shao X, Bai N, Lo CY, Yang CS, Ho CT. Tea polyphenol (-)-epigallocatechin-3-gallate: A new trapping agent of reactive dicarbonyl species. Chem Res Toxicol 2007;20:1862–1870.
  • Nakagawa T, Yokozawa T, Terasawa K, Shu S, Juneja LR. Protective activity of green tea against free radical- and glucose-mediated protein damage. J Agri Food Chem 2002;50: 2418–2422.
  • Yiannakopoulou EC. Targeting oxidative stress response by green tea polyphenols: clinical implications. Free Radic Res 2013;47:667–671.
  • Fanali G, di Masi A, Trezza V, Marino M, Fasano M, Ascenzi P. Human serum albumin: From bench to bedside. Mol Aspects Med 2012;33:209–290.
  • Rondeau P, Bourdon E. The glycation of albumin: Structural and functional impacts. Biochimie 2011;93:645–658.
  • Yoshiuchi K, Matsuhisa M, Katakami N, Nakatani Y, Sakamoto K, Matsuoka T, et al. Glycated albumin is a better indicator for glucose excursion than glycated hemoglobin in type 1 and type 2 diabetes. Endocr J 2008;55:503–507.
  • Kisugi R, Kouzuma T, Yamamoto T, Akizuki S, Miyamoto H, Someya Y, et al.Structural and glycation site changes of albumin in diabetic patient with very high glycated albumin. Clini Chim Acta 2007;382:59–64.
  • Saito K, Hamano K, Nakagawa M, Yugawa K, Muraoka J, Kuba H, et al. Conformational analysis of human serum albumin and its non-enzymatic glycation products using monoclonal antibodies. J Biochem 2011;149:569–580.
  • Shaklai N, Garlick RL, Bunn HF. Nonenzymatic glycosylation of human-serum albumin alters its conformation and function. J Biol Chem 1984;259:3812–3817.
  • Cohen MP, Shea E, Chen S, Shearman CW. Glycated albumin increases oxidative stress, activates NF-kappa B and extracellular signal-regulated kinase (ERK), and stimulates ERK- dependent transforming growth factor-beta(1) production in macrophage RAW cells. J Lab Clin Med 2003;141: 242–249.
  • Nin JW, Jorsal A, Ferreira I, Schalkwijk CG, Prins MH, Parving H-H, et al. Higher plasma levels of advanced glycation end products are associated with incident cardiovascular disease and all-cause mortality in type 1 diabetes a 12-year follow-up study. Diabetes Care 2011;34:442–447.
  • Fujiwara Y, Kiyota N, Tsurushima K, Yoshitomi M, Mera K, Sakashita N, et al. Natural compounds containing a catechol group enhance the formation of N-(carboxymethyl)lysine of the Maillard reaction. Free Radic Biol Med 2011;50:883–891.
  • McFarland KF, Catalano EW, Day JF, Thorpe SR, Baynes JW. Non-enzymatic glucosylation of serum-proteins in diabetes-mellitus. Diabetes 1979;28:1011–1014.
  • Elbling L, Weiss R-M, Teufelhofer O, Uhl M, Knasmuller S, Schulte-Hermann R, et al. Green tea extract and (-)-epigallocatechin-3-gallate, the major tea catechin, exert oxidant but lack antioxidant activities. FASEB J 2005;19:807–809.
  • Zimeri J, Tong CH. Degradation kinetics of (-)-epigallocatechin gallate as a function of pH and dissolved oxygen in a liquid model system. J Food Sci 1999;64:753–758.
  • Van Amelsvoort JMM, Hof KHV, Mathot J, Mulder TPJ, Wiersma A, Tijburg LBM. Plasma concentrations of individual tea catechins after a single oral dose in humans. Xenobiotica 2001;31:891–901.
  • Lakowicz JR. Principles of fluorescence spectroscopy. New York: Springer; 2006. 954 p.
  • Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, et al. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 1990;186:464–478.
  • Laemmli UK. Cleavage of structural proteins during the assembly of the hear of bacteriophage T4. Nature 1970;227: 680–685.
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 1999;26:1231–1237.
  • Riedl KM, Hagerman AE. Tannin-protein complexes as radical scavengers and radical sinks. J Agri Food Chem 2001; 49:4917–4923.
  • Glantz SA. Primer of biostatistics. New York: McGraw Hill; 2002. 312 p.
  • Wisman KN, Perkins AA, Jeffers MD, Hagerman AE. Accurate assessment of the bioactivities of redox-active polyphenolics in cell culture. J Agri Food Chem 2008;56: 7831–7837.
  • van Boekel MA. Kinetic aspects of the Maillard reaction: a critical review. Nahrung-Food 2001;45:150–159.
  • Voziyan PA, Khalifah RG, Thibaudeau C, Yildiz A, Jacob J, Serianni AS, Hudson BG. Modification of proteins in vitro by physiological levels of glucose - Pyridoxamine inhibits conversion of Amadori intermediate to advanced glycation end-products through binding of redox metal ions. J Biol Chem 2003;278:46616–46624.
  • Ishii T, Mori T, Ichikawa T, Kaku M, Kusaka K, Uekusa Y, Akagawa M, Aihara Y, et al. Structural characteristics of green tea catechins for formation of protein carbonyl in human serum albumin. Bioorg Med Chem 2010;18:4892–4896.
  • Hagerman AE. Fifty years of polyphenol-protein complexes. Rec Adv Polyphen Res 2012;3:71–97.
  • Li M, Hagerman AE. Role of the flavan-3-ol and galloyl moieties in the interaction of (-)-epigallocatechin gallate with serum albumin. J Agri Food Chem 2014;62:3768–3775.
  • Cao D, Zhang YJ, Zhang HH, Zhong LW, Qian XH. Systematic characterization of the covalent interactions between (-)-epigallocatechin gallate and peptides under physiological conditions by mass spectrometry. Rapid Commun Mass Spectrom 2009;23:1147–1157.
  • Trombley JD, Loegel TN, Danielson ND, Hagerman AE. Capillary electrophoresis methods for the determination of covalent polyphenol-protein complexes. Anal Bioanal Chem 2011;401:1523–1529.
  • Ishii T, Ichikawa T, Minoda K, Kusaka K, Ito S, Suzuki Y, et al. Human serum albumin as an antioxidant in the oxidation of (-)-epigallocatechin gallate: Participation of reversible covalent binding for interaction and stabilization. Biosci Biotechnol Biochem 2011;75:100–106.
  • Aldini G, Vistoli G, Stefek M, Chondrogianni N, Grune T, Sereikaite J, et al. Molecular strategies to prevent, inhibit, and degrade advanced glycoxidation and advanced lipoxidation end products. Free Radic Res 2013;47:93–137.
  • Szwergold BS, Howell SK, Beisswenger PJ. Transglycation - A potential new mechanism for deglycation of Schiff's bases. Ann N Y Acad Sci 2005;1043:845–864.
  • Nakamura K, Nakazawa Y, Ienaga K. Acid-stable fluorescent advanced glycation end products: Vesperlysines A, B, and C are formed as crosslinked products in the maillard reaction between lysine or proteins with glucose. Biochem Biophys Res Commun 1997;232:227–230.
  • Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A. Biomarkers of oxidative damage in human disease. Clin Chem 2006;52:601–623.
  • Tanaka T, Watarumi S, Matsuo Y, Kamei M, Kouno I. Production of theasinensins A and D, epigallocatechin gallate dimers of black tea, by oxidation-reduction dismutation of dehydrotheasinensin A. Tetrahedron 2003;59:7939–7947.
  • Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, Riechel TL. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J Agri Food Chem 1998;46:1887–1892.
  • Lambert JD, Kwon SJ, Hong J, Yang CS. Salivary hydrogen peroxide produced by holding or chewing green tea in the oral cavity. Free Radic Res 2007;41:850–853.
  • Vlassopoulos A, Lean MEJ, Combet E. Role of oxidative stress in physiological albumin glycation: A neglected interaction. Free Radic Biol Med 2013;60:318–324.
  • Hagerman AE, Dean RT, Davies MJ. Radical chemistry of epigallocatechin gallate and its relevance to protein damage. Arch Biochem Biophys 2003;414:115–120.
  • Manach C, Williamson G, Morand C, Scalbert A, Remesy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 2005;81:230S–242S.
  • Sang SM, Lambert JD, Ho CT, Yang CS. The chemistry and biotransformation of tea constituents. Pharmacol Res 2011; 64:87–99.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.