246
Views
16
CrossRef citations to date
0
Altmetric
Original Article

Drugs with susceptible sites for free radical induced oxidative transformations: the case of a penicillin

, , , &
Pages 26-38 | Received 26 May 2015, Accepted 22 Sep 2015, Published online: 11 Nov 2015

References

  • Halliwell B. Free radicals and other reactive species in disease. In: Encyclopedia of Life Sciences. John Wiley & Sons; 2005. p 1–7.
  • Ye ZW, Zhang J, Townsend DM, Tew KD. Oxidative stress, redox regulation and disease of cellular differentiation. Biochim Biophys Acta 2015;1850:1607–1621.
  • Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. 4th ed. New York: Oxford University Press; 2007.
  • Halliwell B. Free radicals and antioxidants: updating a personal view. Nutr Rev 2012;70:257–265.
  • Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000;408:239–247.
  • Liang S, Shiue Y, Kuo C, Guo S, Liao W, Tsai E. Online monitoring oxidative products and metabolites of nicotine by free radicals generation with Fenton reaction in tandem mass spectrometry. Sci World J 2013;2013:1–8.
  • Nouri-Nigjeh E, Bischoff R, Bruins AP, Permentier HP. Electrochemistry in the mimicry of oxidative drug metabolism by Cytochrome P450s. Curr Drug Metab 2011;12:359–371.
  • Ruokolainen M, Valkonen M, Sikanen T, Kotiaho T, Kostiainen R. Imitation of phase I oxidative metabolism of anabolic steroids by titanium dioxide photocatalysis. Eur J Pharm Sci 2014;65:45–55.
  • Camont L, Collin F, Marchetti C, Jore D, Gardes-Albert M, Bonnefont-Rousselot D. Liquid chromatographic/electrospray ionization mass spectrometric identification of the oxidative end-products of trans-resveratrol in aqueous solutions. Rapid Commun Mass Spectrom 2010;24:634–642.
  • Collin F, Khoury H, Bonnefont-Rousselot D, Thérond P, Legrand A, Jore D, Gardés-Albert M. Liquid chromatographic/electrospray ionization mass spectrometric identification of the oxidation end-products of metformin in aqueous solutions, J Mass Spectrom 2004;39:890–902.
  • Spinks JWT, Woods RJ. An Introduction to Radiation Chemistry. 3rd ed. New York: Wiley-Interscience; 1990.
  • Földiák G, Hargittai P, Kaszanyiczki L, Wojnárovits L. A computer controlled pulse radiolysis laboratory. J Radioanal Nucl Chem 1988;125:19–28.
  • Chain EB. In: Nobel Lectures, Physiology or Medicine, 1942-1962. Amsterdam: Elsevier; 1964. p 110–143. The actual lecture was delivered on March 20, 1946.
  • Connors KA, Amidon GL, Stella VJ. Chemical Stability of Pharmaceuticals: A Handbook for Pharmacists. 2nd ed. Canada: John Wiley & Sons; 1986.
  • Nägele E, Moritz R. Structure elucidation of degradation products of the antibiotic amoxicillin with ion trap MSn and accurate mass determination by ESI TOF. J Am Soc Mass Spectrom 2005;16:1670–1676.
  • Steenken S. Addition-elimination paths in electron-transfer reactions between radicals and molecules. J Chem Soc Faraday Trans 1 1987;83:113–124.
  • Asmus KD. Stabilization of oxidized sulfur centers in organic sulfides. Radical cations and odd-electron sulfur-sulfur bonds. Acc Chem Res 1979;12:436–442.
  • Hiller KO, Masloch B, Göbl M, Asmus KD. Mechanism of the •OH radical induced oxidation of methionine in aqueous solution. J Am Chem Soc 1981;103:2734–2743.
  • Cooper WJ, Cramer CJ, Martin NH, Mezyk SP, O’Shea KE, von Sonntag C. Free radical mechanism for the treatment of methyl tert-butyl ether (MTBE) via advanced oxidation/reductive processes in aqueous solutions. Chem Rev 2009;109:1302–1345.
  • Robinson-Fuentes VA, Jefferies TM, Branch SK. Degradation pathways of ampicillin in alkaline solutions. J Pharm Pharmacol 1997;49:843–851.
  • Gozlan I, Rotstein A, Avisar D. Amoxicillin degradation products formed under controlled environmental conditions: identification and determination in the aquatic environment. Chemosphere 2013;91:985–992.
  • Trovó AG, Nogueira RFP, Agüera A, Fernandez-Alba AR, Malato S. Degradation of the antibiotic amoxicillin by photo-Fenton process – chemical and toxicological assessment. Water Res 2011;45:1394–1402.
  • Valvo L, Ciranni E, Alimenti R, Alimonti S, Draisci R, Gianetti L, Lucentini L. Development of a simple liquid chromatographic method with UV and mass spectrometric detection for the separation of substances related to amoxicillin sodium. J Chromatogr A 1998;797:311–316.
  • Davis AM, Jones M, Page MI. Thiazolidine ring opening in penicillin derivatives. Part 1. Imine formation. J Chem Soc Perkin Trans 2 1991;1219–1223.
  • Lamm A, Gozlan I, Rotstein A, Avisar D. Detection of amoxicillin-diketopiperazine-2’,5’ in wastewater samples. J Environ Sci Health Part A 2009;44:1512–1517.
  • Land EJ, Ebert M. Pulse radiolysis studies of aqueous phenol. Water elimination from dihydroxycyclohexadienyl radicals to form phenoxyl. Trans Faraday Soc 1967;63:1181–1190.
  • Pogocki D, Bobrowski K. Oxidative degradation of thiaproline derivatives in aqueous solutions induced by •OH radicals. Isr J Chem 2014;54:321–332.
  • Schöneich C, Bobrowski K. Intramolecular hydrogen transfer as the key step in the dissociation of hydroxyl radical adducts of (alkylthio)ethanol derivatives. J Am Chem Soc 1993;115:6538–6547.
  • Raghavan NV, Steenken S. Electrophilic reaction of the OH radical with phenol. Determination of the distribution of isomeric dihydroxycyclohexdienyl radicals. J Am Chem Soc 1980;102:3495–3499.
  • Bobrowski K, Schöneich C, Holcman J, Asmus KD. •OH radical induced decarboxylation of methionine-containing peptides. Influence of peptide sequence and net charge. J Chem Soc Perkin Trans 2 1991;353–362.
  • Bonifacic M, Möckel H, Bahnemann D, Asmus KD. Formation of positive ions and other primary species in the oxidation of sulphides by hydroxyl radicals. J Chem Soc Perkin Trans 2 1975;675–685.
  • Bobrowski K, Schöneich C. Hydroxyl radical adduct at sulfur in substituted organic sulfides stabilized by internal hydrogen bond. J Chem Soc Chem Commun 1993;795–797.
  • Wisniowski PB, Hug GL, Pogocki D, Bobrowski K. Efficient α-(alkylthio)alkyl-type radical formation in •OH-induced oxidation of α-(methylthio)acetamide. J Phys Chem 2010;114:105–116.
  • Steffen LK, Glass RS, Sabahi M, Wilson GS, Schöneich C, Mahling S, Asmus KD. •OH radical induced decarboxylation of amino acids. Decarboxylation vs bond formation in radical intermediates. J Am Chem Soc 1991;113:2141–2145.
  • Schöneich C, Zhao F, Madden KP, Bobrowski K. Side chain fragmentation of N-terminal threonine or serine residue induced through intramolecular proton transfer to hydroxyl sulfuranyl radical formed at neighboring methionine in dipeptides. J Am Chem Soc 1994;116:4641–4652.
  • Hiller KO, Asmus KD. Formation and reduction reactions of α-amino radicals derived from methionine and its derivatives in aqueous solutions. J Phys Chem 1983;87:3682–3688.
  • Trudinger PA. On the absorbancy of reduced methyl viologen. Anal Biochem 1970;36:222–251.
  • Forni LG, Mönig J, Mora-Arellano VO, Willson RL. Thiyl free radicals: direct observations of electron transfer reactions with phenothiazines and ascorbate. J Chem Soc Perkin Trans 2 1983;961–965.
  • Schuler RH. Oxidation of ascorbate anion by electron transfer to phenoxyl radicals. Radiat Res 1977;69:417–433.
  • Göbl M, Asmus KD. The reaction of α-(alkylthio)alkyl radicals with tetranitromethane. Pulse radiolysis evidence for an intermediate radical adduct. J Chem Soc Perkin Trans 2 1984;691–697.
  • Asmus KD, Göbl M, Hiller KO, Mahling S, Mönig J. S.˙.N and S.˙.O three-electron-bonded radicals and radical cations in aqueous solutions. J Chem Soc Perkin Trans 2 1985;641–646.
  • Glass RS, Hojjatie M, Wilson GS, Mahling S, Göbl M, Asmus KD. Pulse radiolysis generation of sulfur radical cations stabilized by neighboring carboxylate and alcohol groups. J Am Chem Soc 1984;106:5382–5383.
  • Göbl M, Bonifacic M, Asmus KD. Substituent effects on the stability of three-electron-bonded radicals and radical ions from organic sulfur compounds. J Am Chem Soc 1984;106:5984–5988.
  • Trouillas P, Bergès J, Houée-Lévin C. Toward understanding the protein oxidation processes: •OH addition on tyrosine, phenylalanine, or methionine? Int J Quant Chem 2011;111:1143–1151.
  • Schöneich C, Aced A, Asmus KD. Mechanism of oxidation of aliphatic thioethers to sulfoxides by hydroxyl radicals. The importance of molecular oxygen. J Am Chem Soc 1993;115:11376–11383.
  • Schöneich C, Bobrowski K. Reaction of hydroxysulfuranyl radical with molecular oxygen: electron transfer vs addition. J Phys Chem 1994;98:12613–12620.
  • Miller BL, Williams TD, Schöneich C. Mechanism of sulfoxide formation through reaction of sulfur radical complexes with superoxide or hydroxide ion in oxygenated aqueous solution. J Am Chem Soc 1996;118:11014–11025.
  • von Sonntag C. Free-Radical-Induced DNA Damage and its Repair. A Chemical Perspective. Heidelberg: Springer, 2006.
  • Barata-Vallejo S, Ferreri C, Postigo A, Chatgilialuglu C. Radiation chemical studies of methionine in aqueous solution: understanding the role of molecular oxygen. Chem Res Toxicol 2010;23:258–263.
  • Schöneich C. Methionine oxidation by reactive oxygen species: reaction mechanism and relevance to Alzheimer’s disease. Biochim Biophys Acta 2005;1703:111–119.
  • Ignasiak M, Scuderi D, de Oliveira P, Pedzinski T, Rayah Y, Houée-Levin C. Characterization by mass spectrometry and IRMPD spectroscopy of the sulfoxide group in oxidized methionine and related compounds. Chem Phys Lett 2011;502:29–36.
  • Xu G, Kiselar J, He Q, Chance MR. Secondary reactions and strategies to improve quantitative protein footprinting. Anal Chem 2005;77:3029–3037.
  • Schäfer K, Bonifacic M, Bahnemann D, Asmus KD. Addition of oxygen to organic sulfur radicals. J Phys Chem 1978;82:2777–2780.
  • Ghormley JA, Hochanadel CJ. The yields of hydrogen and hydrogen peroxide in the irradiation of oxygen saturated water with cobalt gamma-rays. J Am Chem Soc 1954;76:3351–3352.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.