30
Views
27
CrossRef citations to date
0
Altmetric
Original Article

ESR Spin Trapping Detection of Hydroxyl Radicals in the Reactions of Cr(V) Complexes with Hydrogen Peroxide

&
Pages 17-26 | Published online: 07 Jul 2009

References

  • Connett P. H., Wetterhahn K. E. Metabolism of the carcinogen chromate by cellular constituents. Struc. Bond. 1983; 54: 93–124
  • Bianchi V., Celotti L., Lanfranchi G., Majone F., Marin G., Montaldi A., Sponza G., Tamino G., Venier P., Zantedeschi A., Levis A. G. Genetic effects of chromium compounds. Mutal. Res. 1983; 117: 297–300
  • Leonard A. S., Lauwerys R. R. Carcinogencity and mutagenicity of chromium. Mutal. Res. 1980; 76: 227–239
  • Tsapakos M. J., Wetterhahn K. E. The interaction of chromium with nucleic acids. Chem-Biol. Interact. 1988; 46: 265–277
  • Jennette K. W. Chromate metabolism in liver microsomes. Biol. Trace Elements Res. 1979; 1: 55–62
  • Gruber J. E., Jennette K. W. Metabolism of the carcinogen chromate by rat liver microsomes. Biochem. Biophys. Res. Commun. 1978; 82: 700–706
  • Garcia J. D., Jennette K. W. Electron-Transport cytochrome P-450 system is involved in the microsomal metabolism of the carcinogen chromate. J. Inorg. Biochem. 1981; 14: 281–295
  • Jennette K. W. Microsomal reduction of the carcinogen chromate produces chromium (V). J. Am. Clieni. Soc. 1982; 104: 874–875
  • DeFlora S., Morelli A., Basso C., Romano M., Serra D., DeFlora A. Prominent role of DT-diaphorase as a cellular mechanism reducing chromium (VI) and reverting its mutagencity. Cancer Res. 1985; 45: 3188–3196
  • Banks R. B., Cooke R. T. Chromate reduction by rabbit liver aldehyde oxidase. Biochem. Biophys. Res. Commun. 1986; 137: 8–14
  • Goodgame D. M. L., Joy A. M. ESR study of the Cr(V) and radical species produced in the reduction of Cr(VI) by ascorbate. Inorg. Chim. Acta 1987; 135: 115–118
  • Goodgame D. M. L., Joy A. M. Formation of chromium (V) during the slow reduction of carcinogenic chromium (VI) by milk and some of its constituents. Inorg. Chim. Acta. 1987; 135: L5–L7
  • Brdnca M., Micera G. Reduction of chromium (VI) by D-galaturonic acid and formation of stable chromium (V) intermediates. Inorg. Chim. Aria. 1988; 153: 61–65
  • Cupo D. Y., Wetterhahn K. E. Modification of chromium (VI)-induced DNA damage by glutath-ione and cytochrome P-450 in chicken embryo hepatocytes. Proc. Natl. Acad. Sci. USA. 1985; 82: 6755–6759
  • Wetterhahn K. E., Connett P. H. Metal carcinogens: metabolism and internation with protein and DNA. Trace Subsi. Environ. Health. 1984; 18: 154–162
  • Arslan P., Beltrame M., Tomasi A. Intracellular chromium reduction. Biochim. Biophys. Acta. 1987; 931: 10–15
  • Shi X., Dalal N. S. On the mechanism of the chromate reduction by glutathione: ESR evidence for the glutathionyl radical and isolable Cr(V) intermediate. Biochem. Biophys. Res. Commun 1988; 156: 137–142
  • Shi X., Dalal N. S. (1989) Evidence for free radical involvement in the toxicity and carcinogenicity of chromate dusts. Proc. VII Intl. Pneumoconiosis Conf. 1989. Pittsburgh, PennsylvaniaUSA, (in press)
  • Dalal N. S., Shi X. On the mechanism of chromate reduction by gluthathione: ESR evidence for the glutathionyl radical. Medical. Biochemical and Chemical Aspects of Free Radicals, E. Niki. Elsevier Science Publishers, Amsterdam 1989; 547–550
  • Kawanishi S., Inoie S., Sano S. Mechanism of DNA cleavage induced by sodium chromate (VI) in the presence of hydrogen peroxide. J. Biol. Chem. 1986; 262: 5952–5958
  • Kortenkamp A., Ozolins Z., Beysrsmann D., O'Brien P. Generation of PM2 DNA breaks in the course of reduction of chromium (VI) by glutathione. Mutal. Res. 1989; 216: 19–26
  • Reif D. A., Coulombe R. A., Aust S. D. Vanadate-dependent NAD(P)H oxidation by micro-somal enzymes. Arch. Biochem. Biophys. 1989; 270: 137–143
  • Norseth T., Alexander J., Aaseth J., Langård S. Biliary excretion of chromium in rat: a role of glutathione. Acta Pharmacol. Toxicol. 1982; 51: 450–455
  • Kitagawa S., Seki H., Kametani F., Sakurai H. Uptake of hexavalent chromate by bovine erythrocytes and its interaction with cytoplasmic components: the role of glutathione. Chem.-Biol. Interactions. 1982; 40: 265–274
  • Krurnpolc M., Rocek J. Synthesis of stable chromium (V) complexes of tertiary hydroxy acids. J. Am. Chem. Soc. 1979; 101: 3206–3209
  • Mahapatro S. N., Krumploc M., Rocek J. Three-electron oxidations. 17. The chromium (IV) and chromium (V) steps in the chromic acid cooxidation of 2-hydroxy-2-methylbutyric acid and 2-propanol. J. Am. Chem. Soc. 1980; 102: 3799–3806
  • Derouane E. G., Ouhadi T. ESR studies of the electronic structure of Cr(V) complexes formed in the oxidation of diols by chromate. Chem. Phys. Lett. 1975; 31: 70–71
  • Harbour J. R., Chow V., Bolton J. R. An electron spin resonance study of the spin adducts of OH and HO2 radicals with nitrones in the ultraviolet photolysis of aqueous hydrogen peroxide solution. Canad. J. Chem. 1974; 52: 3549–3553
  • Buettner G. R. Spin trapping: ESR parameters of spin adducts. Free Radical Biol. Med. 1987; 3: 259–303
  • Morehouse K. M., Mason R. P. The transition metal-mediated formation of the hydroxyl free radical during reduction of molecular oxygen of ferrodoxin-ferredoxin: NADP+ oxidoreductase. J. Biol. Chem. 1988; 263: 1204–1211
  • Lown J. W., Chen H.-H. Evidence for the generation of free hydroxyl radical from certain quinone antitumor antibiotics upon reductive activation in solution. Canad. J. Chem. 1981; 59: 390–395
  • Castelhano A. L., Perkins M. J., Griller D. Spin trapping of hydroxyl in water: decay kinetics for the OH and CO2 adducts to 5.5-dimethyl-I-oxide. Canad. J. Chem. 1983; 61: 298–299
  • Janzen E. G., Evans C. A., Liu J. I. P. Factors influencing hyperfine splitting in the ESR spectra of five-membered ring nitroxides. J. Magn. Reson. 1973; 9: 513–516
  • Janzen E. G., Liu J. I. P. Radical addition reaction of 5.5-dimethyl-I -pyrroline-I-oxide. ESR spin trapping with a cyclic nitrone. J. Magn. Reson. 1973; 9: 510–512
  • Janzen E. G., Wang Y. Y., Shetty R. V. Spin trapping with α-pyridyl I-oxide-tert-butyl nitrones in aqueous solutions. A unique electron spin resonance spectrum for the hydroxyl radical adduct. J. Am. Chem. Soc. 1978; 100: 2923–2925
  • Leaustic A., Rabonneau F., Livage J. Photoreactivity of WO3 dispersions: Spin trapping and electron spin resonance detection of radical intermediates. J. Phys. Chem. 1986; 90: 4193–4198
  • Takahashi N., Mikami N., Yamada H., Miyamoto J. Photodegradation of the herbicide bromobutide in water. J. Pesticide Sci. 1985; 10: 247–256
  • Ross D., Norbeck K., Modéus P. Generation and subsequent fate of glutathionyl radicals in biological system. J. Biol. Chem. 1986; 260: 1508–15023
  • Gilbert B. C., Laue H. A. H., Norman R. O. C., Sealy R. C. Electron spin resonance studies. Part XLVI. Oxidation of thiols and disulphides in aqueous solution: formation of RS. RSO., RSO2, and RSSRe, and carbon radicals. J. Chem. Soc. Perkin II. 1975; 892–900
  • Wefers H., Sies H. Oxidation of glutathione by the superoxide radical to the disulfite and the sulfonate yielding singlet oxygen. Eur. J. Biochem. 1983; 137: 29–36

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.