4
Views
23
CrossRef citations to date
0
Altmetric
Original Article

Calcium Antagonists Prevent Monocyte and Endothelial Cell-Induced Modification of Low Density Lipoproteins

, , , , , , , , & show all
Pages 91-100 | Received 13 Feb 1991, Published online: 07 Jul 2009

References

  • Brown M.S., Goldstein J.L. Receptor-mediated control of cholesterol metabolism. Science 1976; 191: 150–154
  • Brown M.S., Kovanen P.T., Goldstein J.L. Regulation of plasma cholesterol by lipoprotein receptors. Science 1981; 212: 628–635
  • Henriksen T., Mahoney E.M., Steinberg D. Enhanced macrophage degradation of LDL previously incubated with cultured endothelial cells: recognition by receptors for acetylated LDL. Proceedings of the National Academy of Science, USA 1981; 78: 6499–6503
  • Morel D.W., Di Corletto P.E., Chisolm G.M. Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation. Arteriosclerosis 1984; 4: 357–364
  • Heinecke J.W., Rosen H., Chait A. Iron and copper promote modification of low density lipoprotein by human arterial muscle cells in culture. Journal of Clinical Investigation 1984; 74: 1890–1894
  • Cathcart M.K., Morel D.W., Chisolm G.M. Monocytes and neutrophils oxidize low density lipoprotein making it cytotoxic. Journal of Leukocytes in Biology 1985; 38: 341–350
  • Leake D.S., Rankin S.M. The oxidative modification of low density lipoproteins by macrophages. Biochemical Journal 1990; 270: 741–748
  • Steinberg D. Metabolism of lipoproteins and their role in the pathogenesis of atherosclerosis. Atherosclerosis Review 1988; 18: 1–23
  • Steinbrecher U.P. Role of oxidatively modified LDL in atherosclerosis. Free Rudicals in Biological Medicine, 9: 155–168
  • Boyd H.C., Gown A.M., Wolfbauer G., Chait A. Direct evidence for a protein recognized by a monoclonal antibody against oxidatively modified LDL in atherosclerotic lesions from a Watanable heritable hyperlipidemic rabbit. American Journal of Pathology 1989; 135: 815–825
  • Parthasardty S., Young S.G., Witztum J.L., Pittman R.C., Steinberg D. Probucol inhibits oxidative modification of low density lipoprotein. Proceedings of the National Academy of Science, USA 1985; 77: 135–143
  • Kita T., Nagano Y., Yokode M., Ishii K., Kume N., Ooshima A., Yoshida H., Kawai C. Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia. Proceedings of the Nutional Academy. of Science, USA 1987; 84: 5928–5931
  • Daugherty A., Zweifel B.S., Schonfield G.S. Probucol attenuates the development of atherosclerosis in cholesterol-fed rabbits. British Journal of Pharmacology, 98: 612–618
  • Breugnot C., Maziere C., Salmon S., Auclair M., Santus R., Morlière P., Lenaers A., Mazière J.C. Phenothiazines inhibit copper and endothelial cell-induced peroxidation of low density lipoprotein. Biochemical Pharmacology 1990; 40: 1975–1980
  • Nayler W.G., Panagiotopoulos S., Elz J.S., Sturrock W.J. Fundamental mechanisms of action of calcium antagonists in myocardial ischemia. American Journal of Cardiology 1987; 59: 75B–83B
  • Sundstrom C., Nilsson K. Establishment and characterization of a human histiocytic lymphoma cell line. International Journal of Cancer 1976; 17: 565–577
  • Ralph P., Pritchard J., Cohn M. Reticulum cell sarcoma: an effector cell in antibody-dependent cell-mediated immunity. Journal of Immunology 1975; 114: 898–908
  • Jaffe E.A., Nachman R.L., Becker C.G., Minick C.R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. Journal of Clinical Investigation. 1973; 52: 2745–2756
  • Havel R.J., Eder H.A., Bragdon J.H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. Journal of Clinical Investigation 1955; 34: 1345–1353
  • Bilheimer D.W., Eisenberg S., Levy R.I. The metabolism of very low density lipoproteins. I. Preliminary in vivo and in vitro observations. Biochimica et Biophysica Acta 1972; 260: 212–221
  • Yagi K. Lipid peroxides and human diseases. Chemistry and Physics of Lipids 1987; 45: 337–351
  • Laurman W., Salmon S., Mazitre C., Mazière J.C., Auclair M., Theron L., Santus R. Carbon disulfide modification and impaired catabolism of low density lipoprotein. Atherosclerosis 1989; 78: 221–218
  • Blois M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958; 181: 1199–1200
  • Ondrias K., Misik V., Gergel D., Stasko A. Lipid peroxidation of phosphatidylcholine liposomes depressed by the calcium channel blockers nifedipine and verapamil and by the antiarrythmic-antihypoxic drug stobadine. Biochimica et Biophysica Acta 1989; 1003: 238–245
  • Janero D.R., Burghardt B., Lopez R. Protection of cardiac membrane phospholipid against oxidative injury by calcium antagonists. Biochemical Pharmacology 1988; 37: 4197–3203
  • Janero D.R., Burghardt D. Antiperoxidant effects of dihydropyridine calcium antagonists. Biochemical Pharmacology 1989; 38: 4344–4348
  • Nagatsuka S., Nakazawa T. Effects of membrane-stabilizing agents, cholesterol and cepharantin, on radiation-induced lipid peroxidation and permeability in liposomes. Biochimica et Biophysica Acta 1982; 691: 171–177
  • McLean L.R., Hagaman K.A. Antioxidant activity of probucol and its effects on phase transitions in phosphatidylcholine liposomes. Biochimica et Biophysica Acta 1990; 1029: 161–166
  • Rouleau J.L., Parmley W.W., Stevens J., Wikman-Coffelt J., Sievers R., Mahley R.W., Havel R.J. Verapamil suppresses atherosclerosis in cholesterol-fed rabbits. Journal of the American College of Cardiology 1983; 1: 1453–1460
  • Sugano M., Nakashima Y., Matsuhima T., Takahara K., Takasugi M., Kuroiwa A., Koide O. Suppression of atherosclerosis in cholesterol-fed rabbits by diltiazem injection. Arteriosclerosis 1986; 6: 237–241
  • Stein O., Leitersdorf E., Stein Y. Verapamil enhances receptor-mediated endocytosis of low density lipoproteins by aortic cells in culture. Arteriosclerosis 1985; 5: 35–44
  • Corsini A., Granata A., Fumagalli R., Paoletti R. Calcium antagonists and low density lipoprotein metabolism by human fibroblasts and hepatoma cell line Hep G2. Pharmacological Research Communications 1986; 18: 1–16
  • Candide C., Mazière J.C., Mazière C., Lageron A., Polonovski J. The effects of perhexiline maleate on low density lipoprotein processing and cholesterol metabolism in cultured human fibroblasts. European Journal of Clinical Pharmacology 1988; 34: 195–199
  • Chappey-Gillet B., Salmon S., Mazière C., Auclair M., Mazière J.C. Verapamil enhances high-density lipoprotein processing in Hep G2 cells preloaded with cholesterol. Biochimica et Biophysica Acta 1990; 1052: 213–277
  • Schmitz G., Robenek H., Beuck M., Krause R., Schurek A., Niemann R. Ca2+ antagonists and ACAT inhibitors promote cholesterol efflux from macrophages by different mechanisms. Arteriosclerosis 1988; 8: 46–56

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.