44
Views
56
CrossRef citations to date
0
Altmetric
Miscellaneous Article

Invited Review: Repair of DNA Damage Induced by Reactive Oxygen Species

Pages 159-171 | Received 24 Oct 1990, Published online: 07 Jul 2009

References

  • Lindahl T. DNA repair enzymes. Annual Review of Biochemistry 1982; 51: 61–87
  • Joenje H. Genetic toxicology of oxygen. Mutation Research 1989; 219: 193–208
  • Breimer L. H. Molecular mechanisms of oxygen radical carcinogenesis and mutagenesis: the role of DNA base damage. Molecular Carcinogenesis 1990; 3: 188–197
  • Halliwell B., Gutteridge J. M. Free Radicals in Biology and Medicine2nd ed. Clarendon Press, Oxford 1989
  • Hutchinson F. Chemical changes induced in DNA by ionizing radiation. Progress in Nucleic Acid Research and Molecular Biology 1985; 32: 115–154
  • von Sonntag C. The Chemical Basis of Radiation Biology. Taylor & Francis, London 1987
  • Fridovich I. Superoxide radical: An endogenous toxicant. Annual Review of Pharmacology and Toxicology 1983; 23: 239–257
  • Ames B. N. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science 1983; 221: 1256–1264
  • Cerutti P. A. Prooxidant states and tumour promotion. Science 1985; 227: 375–381
  • Imlay J. A., Linn S. DNA damage and oxygen radical toxicity. Science 1988; 240: 1302–1309
  • Floyd R. A. Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB Journal 1990; 4: 2587–2597
  • Breimer L. H. Ionising radiation-induced mutation. British Journal of Cancer 1988; 57: 6–18
  • Teoule R. Radiation-induced DNA damage and its repair. International Journal of Radiation Biology 1987; 51: 573–589
  • Teebor G. W., Boorstein R. J., Cadet K. The repairability of oxidative free radical mediated damage to DNA: a review. International Journal of Radiation Biology 1988; 54: 131–150
  • Breimer L., Lindahl T. A DNA glycosylase from Escherichia coli that releases free urea from a polydeoxyribonucleotide containing fragments of base residues. Nucleic Acids Research 1980; 8: 6199–6211
  • Breimer L. H., Lindahl T. DNA glycosylase activities for thymine residues damaged by ring saturation, fagmentation, or ring contraction are functions of endonucleaselll in. Escherichia coli. Journal of Biological Chemistry 1984; 259: 5543–5548
  • Breimer L. H., Lindahl T. Thymine lesions produced by ionizing radiation in doublestranded DNA. Biochemistry 1985; 24: 4108–4022
  • Lindahl T. DNA glycosylases, endonucleases for apurinic/apyrimidinic sites, and base excision repair. Progress in Nucleic Acids Research and Molecular Biology 1979; 22: 135–192
  • Sancar A., Sancar G. B. DNA repair enzymes. Annual Review of Biochemistry 1988; 57: 29–67
  • Baily V., Verly W. G. Escherichia colirendonucleaselll is not an endonuclease but a beta-elimination catalyst. Biochemical Journal 1987; 242: 565–572
  • Helland D. E., Doetsch P. W., Haseltine W. A. Substrate specificity of a mammalian DNA repair endonuclease that recognises oxidative DNA damage. Molecular and Cellular Biology 1986; 6: 1983–1990
  • Weiss R. B., Duker N. J. Photoalkylated DNA and ultraviolet-irradiated DNA are incised at cytosines by endonuclease III. Nucleic Acids Research 1988; 14: 6621–6631
  • Doetsch P. W., Henner W. D., Cunningham R. P., Toney J. H., Helland D. E. A highly conserved endonuclease activity present in Escherichia coli bovine and human cells recognizes oxidative DNA damage at sites of pyrimidines. Molecular and Cellular Biology 1987; 7: 26–32
  • Doetsch P. W., Helland D. E., Haseltine W. A. Mechanism of action of a mammalian DNA repair endonuclease. Biochemistry 1988; 25: 2212–2220
  • Weiss R. B., Gallagher P. E., Brent T. P., Perker N. J. Cytosine photoproduction-DNA glycosylase in Escherichia coli and cultured human cells. Biochemistry 1988; 28: 1488–1492
  • Boorstein R. J., Hilbert T. P., Cadet J., Cunningham R. P., Teebor G. W. UV induced pyrimidine hydrates in DNA are repaired by bacterial and mammalian DNA glycosylase activities. Biochemistry 1989; 28: 6164–6170
  • Radman M. An endonuclease from E. coli that introduces single polynucleotide chain scission in UV-irradiated DNA. Journal of Biological Chemistry 1976; 251: 1438–1445
  • Cunningham R. P., Weiss B. Endonuclease III (nth) mutants of. E coli. Proceedings of the National Academy of Sciences USA 1985; 82: 474–478
  • Asahara H., Wistort P. M., Bank J. F., Bakerian R. H., Cunningham R. P. Purification and characterisation of Escherichia coli endonuclease III from the cloned nth gene. Biochemistry 1989; 28: 4444–4449
  • Cunningham R. P., Asahara H., Bank J. F., Scholes C. P., Salerno J. C., Surerus K., Munck E., McCracken J., Peisachand J., Emptage M. H. Endonuclease III is an iron-sulfur protein. Biochemistry 1989; 28: 4450–4455
  • Michaels M. L., Pham L., Nghiem Y., Cruz C., Miller J. H. MutY, an adenine glycosylase activity on G-A mispairs, has homology to endonuclease III. Nucleic Acids Research 1990; 18: 3841–3845
  • Bacchetti S., van der Plas A., Veldhuisen G. A UV-specific endonucleolytic activity present in human cell extracts. Biochemical and Biophysical Research Communications 1972; 48: 662–669
  • Bacchetti S., Benne R. Purification and characterisation of an endonuclease from calf thymus acting on irradiated DNA. Biochemical Biophysical Acta 1975; 390: 285–297
  • Brent T. P. A human endonuclease for gamma-irradiated DNA. Biophysical Journal 1973; 13: 388–401
  • Breimer L. H., Lindahl T. Enzymatic excision of DNA bases damaged by exposure to ionizing radiation or oxidizing agents. Mutation Research 1985; 150: 85–89
  • Breimer L. H. Urea-DNA glycosylase in mammalian cells. Biochemistry 1983; 22: 4192–4197
  • Brent T. P. Properties of human lymphoblast AP-endonuclease associated with activity for DNA damaged by UV-light, γ-rays or OsO4. Biochemistry 1983; 22: 4507–4512
  • Hollstein M. C., Brooks P., Linn S., Ames B. N. Hydroxymethyluracil DNA glycosylase in mammalian cells. Proceedings of the National Academy of Sciences USA 1984; 81: 4003–4007
  • Higgins S. A., Frenkel K., Cummings A., Geebor G. W. Definitive characterisation of human thymine glycol N-glycosylase activity. Biochemistry 1987; 26: 1683–1688
  • Gossett J., Lee K., Cunningham R. P., Doetsch P. W. Yeast redoxyendonuclease, a DNA repair enzyme similar to Escherichia coli endonuclease III. Biochemistry 1988; 27: 2629–2634
  • Lin J.-J., Sancar A. A new mechanism for repairing oxidative damage to DNA: (A)BC exinuclease removes AP sites and thymine glycol from DNA. Biochemistry 1989; 28: 7979–7984
  • Kow Y. W., Wallace S. S., van Houten B. UvrABC nuclease complex repairs thymine glycol, an oxidative DNA base damage. Multitation Research 1990; 235: 147–156
  • Chetsanga C. J., Lindahl T. Release of 7-methylguanine residues whose imidazole rings have been opened from damaged DNA by a DNA glycosylase from. Eschrichia coli. Nucleic Acids Research 1979; 6: 3673–3684
  • Breimer L. H. Enzymatic excision from y-irradiated polydeoxyribonucleotides of adenine residues whose imidazole rings have been ruptured. Nucleic Acids Research 1984; 12: 6359–6367
  • Boiteaux S., O'Connor T. R., Laval J. Formamidopyrimidine-DNA glycosylase of E. coli: Cloning and sequencing of the fpg structural gene and overproduction of the protein. EMBO Journal 1987; 6: 3177–3183
  • Margison G. P., Pegg A. E. Enzymatic release of 7-methylguanine from methylated DNA by rodent liver extracts. Proceedings of the National Academy of Sciences USA 1981; 78: 861–865
  • Boiteux S., O'Connor T. R., Lederer F., Gouyette A., Laval J. Homogenous Escherichia coli FPG protein. Journal of Biological Chemistry 1990; 265: 3916–3922
  • O'Connor T. R., Laval J. Physical association of the 2,6-diamino-4-hydroxy-5N- formamidopyrimidine-DNA glycosylase of Escherichia coli and an activity nicking DNA at apurinic/apyrimidinic sites. Proceedings of the National Academy of Sciences USA 1988; 86: 5222–5226
  • Bailly V., Verly W. G., O'Connor T., Laval J. Mechanisms of DNA strand nicking at apurinic/apyrimidinic sites by Escherichia coli [formamidopyrimidine]DNA glycosylase. Biochemical Journal 1989; 262: 581–589
  • Boiteux S., Huisman D. Isolation of formamidopyrimidine-DNA glycosylate (fpg) mutant of Escherichia coli K12. Molecular and General Genetics 1989; 215: 300–305
  • Kuchino Y., Mori F., Kasai H., Inoue H., Iwai S., Miura K., Ohtsuka E., Nishimura S. Misreading of DNA templates containing 8-hydroxydeoxyguanosine at the modified base and at adjacent residues. Nature 1987; 237: 77–79
  • Schneider J. E., Price S., Maidt L., Gutteridge J. M.C., Floyd R. A. Methylene blue plus light mediates 8-hydroxy-2′-deoxyguanosine formation in DNA preferentially over strand breakage. Nucleic Acids Research 1990; 18: 631–635
  • Muller E., Boiteux S., Cunningham R. P., Epe B. Enzymatic recognition of DNA modifications induced by singlet oxygen and photosensitizers. Nucleic Acids Research 1990; 18: 5969–5973
  • Decuyper-Deergh D., Piette J., van de Vorst A. Singlet oxygen-induced mutations in M13 lacZ phase DNA. EMBO Journal 1987; 6: 3155–3161
  • Epe B., Hegler J., Wild D. Singlet oxygen as an ultimately reactive species in Salmonella tvphimurium DNA damage induced by methylene blue/visible light. Carcinogenesis 1989; 10: 2019–2024
  • Walker J. W., Somlyo A. V., Goldman Y. E., Somlyo A. P., Trentham D. R. Kinetics of smooth and skeletal muscle activation by laser pulse photolysis of cage inositol 1,4,5-trisphosphate. Nature 1987; 237: 249–252
  • Boorstein R. J., Levy D. D., Teebor G. W. Hydroxymethyluracil-DNA glycosylase activity may be a differentiated mammalian function. Mutation Research 1987; 183: 257–263
  • Cannon S., Cummings A., Teebor G. W. 5-Hydroxymethylcyosine-DNA glycosylase activity in mammalian tissues. Biochemical and Biophysical Research Communications 1988; 151: 1173–1179
  • Cannon-Carlson S. V., Gokhale H., Teebor G. W. Purification and charactrisation of 5-hydroxymethyluracil-DNA glycosylase from calf thymus. Its possible role in the maintenance of methylated cytosine residues. Journal of Biological Chemistry 1989; 264: 13306–13312
  • Friedberg E. C., Ganesan A. K., Minton K. N-glycosidase activity in extracts of Bacillus subtilis and its inhibition after infection with bacteriophase PBS2. Journal of Virology 1978; 16: 315–321
  • Phear G., Nalbantoglu J., Meuth M. Next nucleotide effects in mutations driven by DNA precursor pool imbalances at the aprt locus in CHO cells. Proceedings at the National Academy of Sciences USA 1987; 84: 4450–4544
  • Dizdaroglu M., Gajewski F., Reddy P., Margolis S. A. Structure of a hydroxyl radicalinduced DNA-protein cross-link involving thymine and tyrosine in nucleohistone. Biochemistry 1980; 28: 3625–3628
  • Gajewski E., Dizdaroglu M. Hydroxyl radical induced cross-linking of cytosine and tyrosine in nucleohistone. Biochemistry 1990; 29: 977–980
  • Ljungquist S., Andersson A., Lindhahl T. A mammalian endonuclease specific for apurinic sites in double-stranded deoxyribonucleic acid. II. Further studies on the substrate specificity. Journal of Biological Chemistry 1974; 249: 1536–1540
  • Loeb L. A., Preston B. D. Mutagenesis by apurinic/apyrimidinic sites. Annual Review of Genetics 1986; 20: 201–230
  • Granger-Schnarr M. Base pair substitutions and frame shift mutageneis induced by apurinic sites and two fluorene derivatives. Molecular and General Genetics 1986; 202: 90–95
  • Foster P. L., Davies E. F. Loss of an apurinic/apyrimidinic site endonuclease increases the mutagenicity of N-methyl-N'-nitro-N-nitrosoguanidine to. E coli. Proceedings of the National Academy of Sciences USA 1987; 84: 2891–2895
  • Cunningham R. P., Saporito S. M., Spitzer S. G., Weiss B. Endonuclease IV (info) mutants of. E coli. Journal of Bacteriology 1988; 168: 1120–1127
  • Friedberg E. C. DNA repair. W.H. Freeman & Co., New York 1985
  • Ljungquist S. A new endonuclease from Escherichia coli acting at apurinic sites in DNA. Journal of Biological Chemistry 1977; 252: 2808–2814
  • Bopp A., Hagen L. End group determination in gamma-irradiated DNA. Biochemica et Biophysica Acta 1970; 209: 320–326
  • Ulrich M., Hagen U. Base liberation and concomittant reactions in irradiated DNA solutions. International Journal of Radiation Biology 1971; 19: 509–512
  • Henner W. D., Rodriquez L. O., Hecht S. M., Haseltine W. A. Gamma ray induced deoxyribonucleic acid strand breaks. Journal of Biological Chemistry 1983; 258: 711–713
  • Henner W. D., Grunberg S. M., Haseltine W. A. Enzyme action at 3′-termini of ionizing radiation-induced DNA strand breaks. Journal of Biological Chemistry 1983; 258: 15198–15205
  • Demple B., Halbrook J., Linn S. Escherichia coli mutants are hypersensitive to hydrogen peroxide. Journal of Bacteriology 1983; 153: 1079–1082
  • Demple B., Johnson A., Fung D. Exonuclease III and endonuclease IV remove 3′ blocks from DNA synthesis primers in H2O2-damaged Escherichia coli. Proceedings of the National Academy of Sciences USA 1986; 83: 7731–7735
  • Levin J. D., Johnson A. W., Demple B. Homogenous Escherichia coli endonuclease IV. Journal of Biological Chemistry 1988; 263: 8066–8071
  • Bernelot-Moens C., Demple B. Multiple DNA repair activities of 3′-deoxyribose fragments in Escherichia coli. Nucleic Acids Research 1989; 17: 587–600
  • Chan E., Weiss B. Endonuclease IV of Escherichia coli is induced by paraquat. Proceedings of the National Academy of Sciences USA 1987; 84: 3189–3193
  • Greenberg J. T., Monach P., Choui J. H., Josephy P. D., Demple B. Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in. Escherichia coli. Proceedings of the National Academy of Sciences USA 1990; 87: 6181–6185
  • Johnson A. W., Demple B. Yeast DNA diesterase for -fragments of deoxyribose: pruification and physical properties of a repair enzyme for oxidative DNA damage. Journal of Biolgocial Chemistry 1988; 263: 18009–18016
  • Johnson A. W., Demple B. Yeast DNA 3′-repair diesterase is the major cellular apurinic/apyrimidinic endonuclease: substrate specificity and kinetics. Journal of Biolgoical Chemistry 1988; 263: 18017–18022
  • Popoflf S. C., Spira A. I., Johnson A. W., Demple B. Yeast structural gene (APN1) for the major apurinic endonuclease: Homology to Escherichia coli endonuclease IV. Proceedings of the National Academy of Sciences USA 1990; 87: 4193–4197
  • Dinidial R., Popoff S. C., Demple B. Complementation of DNA repair-deficient Escherichia coli by the yeast Apnl apurinic/apyrimidinic endonuclease gene. Molecular Microbiology, submitted
  • Franklin W. A., Lindahl T. DNA doexyribophosphodiesterase. EMBO Journal 1988; 7: 3617–3622
  • Franklin W. A., Sandigursky M. E. Characterisation of DNA sugar products released at both 5′ and 3′ incised AP sites by deoxyribophosphodiesterase of. E. coli. Journal of Cellular Biochemistry 1990; 14A, 41.
  • Younes M., Strubelt O. Alcohol-induced hepatotoxicity: a role for oxygen free radicals. Free Radical Research Communications 1987; 3: 19–26
  • Peters T. J., Ward R. J. Role of acetaldehyde in pathogenesis of alcoholic liver disease. Molecular Aspects of Medicine 1988; 10: 179–190
  • Lin Y.-C., Ho I.-C., Lee T.-C. Ethanol and acetaldehyde potentiate the clastogenicity of ultraviolet light, methyl methanesulfonate, mitomycin C and bleomycin in Chinese hamster ovary cells. Mutation Research 1989; 226: 93–99
  • Liber H. L., Benforado K., Crosby R. M., Simpson D., Skopek T. R. Formaldehydeinduced and spontaneous alterations in human hprt DNA sequence and mRNA expression. Mutation Research 1989; 226: 31–37
  • Kemp L. M., Sedgwick S., Jeggo P. X-ray sensitive mutants of Chinese hamster ovary cells defective in double strand break rejoining. Mutation Research 1986; 132: 189–196
  • Kemp L. M., Jeggo P. Radiation induced chromosome damage in X-ray sensitive mutants (xrs) of the Chinese hamster ovary cell line. Mutation Research 1986; 166: 255–263
  • German J., Bloom D., Passarge E. Bloom's syndromeXI. Progress report for 1983. Clinical Genetics 1984; 25: 177–174
  • Weksberg R., Smith C., Anson-Cartwright I., Maloney K. Bloom syndrome: a single complementation group defines patients of diverse ethnic origin. American Journal of Human Genetics 1988; 42: 816–824
  • German J., Archibald R., Bloom D. Chrosmosomal breaking in a rare and probably genetically determined disorder of man. Science 1965; 148: 506–507
  • Kuhn E. M., Therman E., Denniston C. Mitotic chiasmata, gene density, and oncogenes. Human Genetics 1985; 70: 1–5
  • German J., Schonberg S., Louis E., Chaganti R. S.K. Bloom syndrome. IV. Sister-chromatid exchanges in lymphocytes. American Journal of Human Genetics 1977; 29: 248–255
  • Joenje H., Arwert F., Eriksson A. W., deKoning H., Oostra A. B. Oxygen-dependence of chromosomal aberrations in Fanconi's anaemia. Nature 1981; 290: 142–143
  • Joenje H., Oostra A. B., Wanamarta A. H. Cytogenetic toxicity of D,0 in human lymphocyte cultures. Increased sensitivity in Fanconi's anaemia. Experentia 1983; 39: 782–784
  • Warren S. T., Schultz R. A., Chang C., Wade M. H., Trosko J. E. Elevated spontaneous mutation rate in Bloom syndrome fibroblasts. Proceedings of the National Academy of Sciences USA 1981; 78: 3133–3137
  • Emerit I., Cerutti P. A. Clastongenic activity from Bloom syndrome fibroblast cultures. Proceedings of the National Academy of Sciences USA 1981; 78: 1868–1872
  • Poot M., Rudiger H. W., Hoehns H. Detection of free radical-induced DNA damage with bromodeoxyuridine/Hoechst flow cytometry: implications for Bloom's syndrome. Mutation Research 1980; 238: 203–207
  • Gianelli F., Benson P. F., Rawsey S. R., Polani P. UV-light sensitivity and delayed DNA-chain maturation in Bloom's syndrome fibroblasts. Nature 1977; 265: 466–469
  • Hand R., German J. A retarded rate of DNA chain growth in Bloom's syndrome. Proceedings of the National Academy of Sciences USA 1975; 72: 758–762
  • Gianelli F., Pawsey S. A., Botcherby P. K. Tendency to high UVR-induced unscheduled DNA synthesis in Bloom's syndrome. Mutation Research 1981; 81: 229–241
  • Willis A. E., Lindahl T. DNA ligase I deficiency in Bloom's syndrome. Nature 1987; 325: 355–357
  • Willis A. E., Weksberg R., Tomlinson S., Lindahl T. Proceedings of the National Academy of Sciences USA 1987; 84: 8016–8020
  • Chan J. Y.H., Becker F. F., German J., Ray J. H. Altered DNA ligase I activity in Bloom's syndrome cells. Nature 1987; 325: 357–359
  • Tomkinson A. E., Lasko D. D., Daly G., Lindahl T. Mammalian DNA ligases: catalytic domain and size of DNA ligase I. Journal of Biological Chemistry 1990; 265: 12611–12617
  • Lasko D. D., Tomkinson A. E., Lindahl T. Mammalian DNA ligases: biosynthesis and interacellular localisation. Journal of Biological Chemistry 1990; 265: 12618–12622
  • Bishop J. M. The molecular genetics of cancer. Science 1987; 235: 305–311
  • Stanbridge E. J. Identifying tumour suppressor genes in human colorectal cancer. Science 1990; 247: 12–13

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.