15
Views
35
CrossRef citations to date
0
Altmetric
Original Article

Commentary Salicylate Trapping of -OH as a Tool for Studying Post-Ischemic Oxidative Injury in the Isolated Rat Heart

Pages 355-370 | Received 26 May 1994, Published online: 07 Jul 2009

References

  • Harman D. Role of free radicals in aging and disease. Annals of the New York Academy of Sciences 1992; 673: 126–141
  • Hagen U. Biochemical aspects of radiation biology. Experientia 1989; 45: 7–12
  • Lai E. K., Crossley C., Sridhar R., Misra H. P., Janzen E. G., McCay P. B. In vivo spin trapping of free radicals generated in brain, spleen, and liver during gamma radiation of mice. Archives of Biochemistry and Biophysics 1986; 244: 156–160
  • Greenwald R. A. Oxygen radicals, inflammation, and arthritis: pathophysiological considerations and implications for treatment. Seminars in Arthritis and Rheumatism 1991; 20: 219–240
  • Kehrer J. P. Free radicals as mediators of tissue injury and disease. Critical Reviews of Toxicology 1993; 23: 21–48
  • Hess M. L., Manson N. H., Okabe E. Involvement of free radicals in the pathophysiology of ischemic heart disease. Canadian Journal of Physiology and Pharmacology 1982; 60: 1382–1389
  • Rao P. S., Cohen M. V., Mueller H. S. Production of free radicals and lipid peroxides in early experimental ischemia. Journal of Molecular and Cellular Cardiology 1983; 15: 713–716
  • Romson J. L., Hook B. G., Kunkel S. L., Abrams G. D., Schork A., Lucchesi B. R. Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation 1983; 67(5)1016–1023
  • Koyama I., Bulkley G. B., Williams G. M., Im M. J. The role of oxygen free radicals in mediating the reperfusion injury of cold-preserved ischemic kidneys. Transplantation 1985; 40: 590–595
  • Ratych R. E., Bulkley G. B., Williams G. M. ischemia/reperfusion injury in the kidney. Progress in Clinical and Biological Research 1986; 224: 263–289
  • Kogure K., Arai H., Abe K., Nakano M. Free radical damage of the brain following ischemia. Progress in Brain Research 1985; 63: 237–259
  • Itoh T., Kawakami M., Yamauchi Y., Shimizu S., Nakamura M. Effect of allopurinol on ischemia and reperfusion-induced cerebral injury in spontaneously hypertensive rats. Stroke 1986; 17: 1284–1287
  • Atalla S. L., Toledo L. H.-Pereyra, MacKenzie G. H., Cederna J. P. Influence of oxygen-derived free radical scavengers on ischemic livers. Transplantation 1985; 40: 584–590
  • Adkison D., Hollwarth M. E., Benoit J. N., Parks D. A., McCord J. M., Granger D. N. Role of free radicals in ischemia-reperfusion injury to the liver. Acta Physiologica Scandinavica [Supplement] 1986; 548: 101–107
  • McEnroe C. S., Pearce F. J., Ricotta J. J., Drucker W. R. Failure of oxygen-free radical scavengers to improve postischemic liver function. Journal of Trauma 1986; 26: 892–896
  • Bounous G. Pancreatic proteases and oxygen-derived free radicals in acute ischemic enteropathy. Surgery 1986; 99: 92–94
  • Sanfey H., Sarr M. G., Bulkley G. B., Cameron J. L. Oxygen-derived free radicals and acute pancreatitis: a review. Acta Physiologica Scandinavica [Supplement] 1986; 548: 109–118
  • Manson P. N., Narayan K. K., Im M. J., Bulkley G. B., Hoopes J. E. Improved survival in free skin flap transfers in rats. Surgery 1986; 99: 211–215
  • Angel M. F., Narayanan K., Swartz W. M., Ramasastry S. S., Kuhns D. B., Basford R. E., Futrell J. W. Deferoxamine increases skin flap survival: additional evidence of free radical involvement in ischaemic flap surgery. British Journal of Plastic Surgery 1986; 39: 469–472
  • Otamiri T. Oxygen radicals, lipid peroxidation, and neutrophil infiltration after small-intestinal ischemia and reperfusion. Surgery 1989; 105: 593–597
  • Parks D. A., Bulkley G. B., Granger D. N., Hamilton S. R., McCord J. M. ischemic injury in the cat small intestine-role of superoxide radicals. Gastroenterology 1982; 82: 9–15
  • Arroyo C. M., Kramer J. H., Dickens B. F., Weglicki W. B. Identification of free radicals in myocardial ischemia/repert usion by spin trapping with nitrone DMPO. FEBS Letters 1987; 221(1)101–104
  • Kramer J. H., Arroyo C. M., Dickens B. F., Weglicki W. B. Spin-trapping evidence that graded myocardial ischemia alters post-ischemic superoxide production. Free Radical Biology and Medicine 1987; 3: 153–159
  • Bolli R., Jeroudi M. O., Patel B. S., DuBose C. M., Lai E. K., Roberts R., McCay P. B. Direct evidence that oxygen-derived free radicals contribute to postischemic myocardial dysfunction in the intact dog. Proceedings of the National Academy of Sciences USA 1989; 86: 4695–4699
  • Bolli R., Patel B., Jeroudi M. O., Lai E. K., McCay P. B. Demonstration of free radical generation in “stunned” myocardium of intact dogs with the use of the spin trap a-phenyl N-tert-butyl nitrone. Journal of Clinical Investigation 1988; 82: 476–485
  • X-Li Y., McCay P. B., Zughaib M., Jeroudi M. O., Triana J. F., Bolli R. Demonstration of free radical generation in the “stunned” myocardium in the conscious dog and identification of major differences between conscious and open-chest dogs. Journal of Clinical Investigation 1993; 92: 1025–1041
  • Coghlan J. G., Flitter W. D., Holley A. E., Norell M., Mitchell A. G., Ilsley C. D., Slater T. F. Detection of free radicals and cholesterol hydroperoxides in blood taken from the coronary sinus of man during transluminal coronary angioplasty. Free Radical Research Communications 1991; 14: 409–417
  • Tortolani A. J., Powell S. R., Misik V., Weglicki W. B., Pogo G. J., Kramer J. H. Detection of alkoxyl and carbon-centered free radicals in coronary sinus blood from patients undergoing elective cardioplegia. Free Radical Biology and Medicine 1993; 14: 421–426
  • Rosen G. M., Rauckman E. J. Spin trapping of superoxide and hydroxyl radicals. Methods in enzymologyVolume 105 Oxygen radicals in biological systems, L. Packer. Academic Press, Inc., New York 1984; 198–209
  • Garlick P. B., Davies M. J., Hearse D. J., Slater T. F. Direct detection of free radicals in the reperfused rat heart using electron spin resonance spectroscopy. Circulation Research 1987; 61: 757–760
  • Zweier J. L., Kuppusamy P., Lutty G. A. Measurement of endothelial cell free radical generation: evidence for a central mechanism of free radical injury in postischemic tissues. Proceedings of the National Academy of Sciences USA 1988; 85: 4046–4050
  • Samuni A., Carmichael A. J., Russo A., Mitchell J. B., Riesz P. On the spin trapping and ESR detection of oxygen-derived radicals generated inside cells. Proceedings of the National Academy of Sciences USA 1986; 83: 7593–7597
  • Floyd R. A. Hydroxyl free-radical spin-adduct in rat brain synaptosomes. Observations on the reduction of the nitroxide. Biochimica Biophysica Acta 1983; 756: 204–216
  • Samuni A., Swartz H. M. The cellular-induced decay of DMPO spin adducts of .OH and .O2−. Free Radical Biology and Medicine 1989; 6: 179–183
  • Iannone A., Hu H., Tomasi A., Vannini V., Swartz H. M. Metabolism of aqueous soluble nitroxides in hepatocytes: effects of cell integrity, oxygen, and structure of nitroxides. Biochimica Biophysica Acta 1989; 991: 90–96
  • Swartz H. M., Sentjurc M., Morse P. Cellular metabolism of water-soluble nitroxides: effect on rate of reduction of cell/nitroxide ratio, oxygen concentrations and permeability of nitroxides. Biochimica Biophysica Acta 1986; 888: 82–90
  • Maskos Z., Rush J. D., Koppenol W. H. The hydroxylation of phenylalanine and tyrosine: A comparison with salicylate and tryptophan. Archives of Biochemistry and Biophysics 1992; 296: 521–529
  • Halliwell B., Grootveld M., Gutteridge J. M.C. Methods for the measurement of hydroxyl radicals in biochemical systems: deoxyribose degradation and aromatic hydroxylation. Methods of Biochemical Analysis 1989; 33: 59–90
  • Floyd R. A., Watson J. J., Wong P. K. Sensitive assay of hydroxyl free radical formation utilizing high pressure liquid chromatography with electrochemical detection of phenol and salicylate hydroxylation products. Journal of Biochemical and Biophysical Methods 1984; 10: 221–235
  • Halliwell B., Ahluwalia S. Hydroxylation of p-coumaric acid by horseradish peroxidase. The role of superoxide and hydroxyl radicals. Biochemical Journal 1976; 153: 513–518
  • Floyd R. A., Henderson R., Watson J. J., Wong P. K. Use of salicylate with high pressure liquid chromatography and electrochemical detection (LCED) as a sensitive measure of hydroxyl free radicals in adriamycin treated rats. Journal of Free Radical Biology and Medicine 1986; 2: 13–18
  • Grootveld M., Halliwell B. Aromatic hydroxylation as a potential measure of hydroxyl-radical formation. in vivo. Biochemical Journal 1986; 237: 499–504
  • Powell S. R., Hall D. Use of salicylate as a probe for .OH formation in isolated ischemic rat hearts. Free Radical Biology and Medicine 1990; 9: 133–141
  • Onodera T., Ashraf M. Detection of hydroxyl radicals in the post-ischemic reperfused heart using salicylate as a trapping agent. Journal of Molecular and Cellular Cardiology 1991; 23: 365–370
  • Das D. K., Cordis G. A., Rao P. S., Liu X., Maity S. High-performance liquid chromatographic detection of hydroxylated benzoic acids as an indirect measure of hydroxyl radical in heart: Its possible link with the myocardial reperfusion injury. Journal of Chromatography 1991; 536: 273–282
  • Cao W., Carney J. M., Duchon A., Floyd R. A., Chevion M. Oxygen free radical involvement in ischemia and reperfusion injury to brain. Neuroscience Letters 1988; 88: 233–238
  • Oliver C. N., Starke P. E.-Reed, Stadtman E. R., Liu G. J., Carney J. M., Floyd R. A. Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proceedings of the National Academy of Sciences USA 1990; 87: 5144–5147
  • Grammas P., Liu G. J., Wood K., Floyd R. A. Anoxia/reoxygenation induces hydroxyl free radical formation in brain microvessels. Free Radical Biology and Medicine 1993; 14: 553–557
  • Ophir A., Berenshtein E., Kitrossky N., Berman E. R., Photiou S., Rothman Z., Chevion M. Hydroxyl radical generation in the cat retina during reperfusion following ischemia. Experimental Eye Research 1993; 57: 351–357
  • Udassin R., Ariel I., Haskel Y., Kitrossky N., Chevion M. Salicylate as an in vivo free radical trap: studies on ischemic insult to the rat intestine. Free Radical Biology and Medicine 1991; 10: 1–6
  • Ghiselli A., Laurenti O., DeMattia G., Maiani G., Ferro A.-Luzzi. Salicylate hydroxylation as an early marker of in vivo oxidative stress in diabetic patients. Free Radical Biology and Medicine 1992; 13: 621–626
  • Hall E. D., Andrus P. K., Yonkers P. A. Brain hydroxyl radical generation in acute experimental head injury. Journal of Neurochemistry 1993; 60: 588–594
  • Diaz P. T., Z-She W., Davis W. B., Clanton T. L. Hydroxylation of salicylate by the in vitro diaphragm: Evidence for hydroxyl radical production during fatigue. Journal of Applied Physiology 1993; 75: 540–545
  • Chiueh C. C., Krishna G., Tulsi P., Obata T., Lang K., S-Huang J., Murphy D. L. Intracranial microdialysis of salicylic acid to detect hydroxyl radical generation through dopamine autooxidation in the caudate nucleus: Effects of MPP+. Free Radical Biology and Medicine 1992; 13: 581–583
  • Obata T., Chiueh C. C. In vivo trapping of hydroxyl free radicals in the striatum utilizing intracranial microdialysis perfusion of salicylate: Effects of MPTP, MPDP+, and MPP+. Journal of Neural Transmission 1992; 89: 139–145
  • J-Sun Z., Kaur H., Halliwell B., X-Li Y., Bolli R. Use of aromatic hydroxylation of phenylalanine to measure production of hydroxyl radicals after myocardial ischemia in vivo: Direct evidence for a pathogenetic role of the hydroxyl radical in myocardial stunning. Circulation Research 1993; 73: 534–549
  • Maskos Z., Rush J. D., Koppenol W. H. The hydroxylation of the salicylate anion by a Fenton reaction and G-radiolysis: A consideration of the respective mechanisms. Free Radical Biology and Medicine 1990; 8: 153–162
  • Kurata T., Watanabe Y., Katoh M., Sawaki Y. Mechanism of aromatic hydroxylation in the Fenton and related reactions. One-electron oxidation and the NIH shift. Journal of the American Chemical Society 1988; 110: 7472–7478
  • Raghavan N. V., Steenken S. Electrophilic reaction of the OH radical with phenol. Determination of the distribution of isomeric dihydroxycyclohexadienyl radicals. Journal of the American Chemical Society 1980; 102: 3495–3499
  • Anbar M., Meyerstein D., Neta P. The reactivity of aromatic compounds toward hydroxyl radicals. Journal of Physical Chemistry 1966; 70: 2660–2662
  • Tosaki A., Bagchi D., Pali T., Cordis G. A., Das D. K. Comparisons of ESR and HPLC methods for the detection of OH. radicals in ischemic/reperfused hearts. A relationship between the genesis of free radicals and repert usion arrhythmias. Biochemical Pharmacology 1993; 45: 961–969
  • Takemura G., Onodera T., Ashraf M. Quantification of hydroxyl radical and its lack of relevance to myocardial injury during early reperfusion after graded ischemia in rat hearts. Circulation Research 1992; 71: 96–105
  • Duncan E., Onodera T., Ashraf M. Production of hydroxyl radicals and their disassociation from myocardial cell injury during calcium paradox. Free Radical Biology and Medicine 1992; 12: 11–18
  • Anonymous. Instruction Manual. ESA, Inc., Bedford, MA 1987, The Model 5100A Coulechem Detector
  • Powell S. R., Hyacinthe L., Teichberg S., Tortolani A. J. Mediatory role of copper in reactive oxygen intermediate-induced cardiac injury. Journal of Molecular and Cellular Cardiology 1992; 24: 1371–1386
  • Liu X., Tosaki A., Engelman R. M., Das D. K. Salicylate reduces ventricular dysfunction and arrhythmias during reperfusion in isolated rat hearts. Journal of Cardiovascular Pharmacology 1992; 19: 209–215
  • Gelvan D., Moreno V., Gassman W., Hegenauer J., Saltman P. Metal-ion-directed site-specificity of hydroxyl radical detection. Biochimica Biophysica Acta General Subjects 1992; 1116: 183–191
  • Langendorff O. Untersuchengen am uberlebenden Saugetierherzen. Pfluger's Archiv fÜr die gesamte Physiologie 1895; 61: 291–332
  • Powell S. R., Wapnir R. A. Adventitious redox-active metals in Krebs-Henseleit buffer can contribute to Langendorff heart experimental results. Journal of Molecular and Cellular Cardiology 1994; 26: 769–778
  • Shlafer M., Brosamer K., Forder J. R., Simon R. H., Ward P. A., Grum C. M. Cerium chloride as a histochemical marker of hydrogen peroxide in reperfused ischemic hearts. Journal of Molecular and Cellular Cardiology 1990; 22: 83–97
  • Myers C. L., Weiss S. J., Kirsh M. M., Shlafer M. Involvement of hydrogen peroxide and hydroxyl radical in the “oxygen paradox”: reduction of creatine kinase release by catalase, allopurinol or deferoxamine, but not by superoxide dismutase. Journal of Molecular and Cellular Cardiology 1985; 17: 675–684
  • Döring H. J., Dehnert H. The Isolated Perfused Heart According to Langendorff. Biomesstechnik-Verlag March GmbH, West Germany 1987, March
  • Tosaki A., Blasig I. E., Pali T., Ebert B. Heart protection and radical trapping by DMPO during reperfusion in isolated working rat hearts. Free Radical Biology and Medicine 1990; 8: 363–372
  • Culcasi M., Pietri S., Cozzone P. J. Use of 3,3,5,5-tetramethyl-1-pyrroline-1-oxide spin trap for the continuous flow ESR monitoring of hydroxyl radical generation in the ischemic and reperfused myocardium. Biochemical and Biophysical Research Communications 1989; 164: 1274–1280
  • Powell S. R., Hall D., Shih A. Copper loading of hearts increases postischemic reperfusion injury. Circulation Research 1991; 69: 881–885
  • Mitchell J. B., Samuni A., Krishna M. C., DeGraff W. G., Ahn M. S., Samuni U., Russo A. Biologically active metal-independent superoxide dismutase mimics. Biochemistry 1990; 29: 2802–2807
  • Gelvan D., Saltman P., Powell S. R. Cardiac reperfusion damage prevented by a nitroxide free radical. Proceedings of the National Academy of Sciences USA 1991; 88: 4680–4684
  • Powell S. R., Hall D., Aiuto L., Wapnir R. A., Teichberg S., Tortolani A. J. Zinc improves postischemic recovery of the isolated rat heart through inhibition of oxidative stress. American Journal of Physiology Heart and Circulatory Physiology 1994; 266: H2497–H2507
  • Takemura G. T., Onodera T., Millard R. W., Ashraf M. Demonstration of hydroxyl radical and its role in hydrogen peroxide-induced myocardial injury-hydroxyl radical dependent and independent mechanisms. Free Radical Biology and Medicine 1993; 15: 13–25
  • Khalid M. A., Ashraf M. Direct detection of endogenous hydroxyl radical production in cultured adult cardiomyocytes during anoxia and reoxygenation: Is the hydroxyl radical really the most damaging radical species. Circulation Research 1993; 72: 725–736
  • Vercesi A. E., Focesi A. J. The effects of salicylate and aspirin on the activity of phosphorylase a in perfused hearts of rats. Experientia 1977; 33(2)157–158
  • Cohen I., Noble D., Ohba M., Ojeda C. Action of salicylate ions on the electrical properties of sheep cardiac Purkinje fibers. Journal of Physiology 1979; 297: 163–185
  • Cohen I., Noble D., Ohba M., Ojeda C. The interaction of ouabain and salicylate on sheep cardiac muscle. Journal of Physiology 1979; 297: 187–205
  • Neto F. R. Electrophysiological effects of the salicylates on isolated atrial muscle of the rabbit. British Journal of Pharmacology 1982; 77: 285–292
  • Hearse D. J., Tosaki A. Free radicals and reperfusion-induced arrhythmias: protection by spin trap agent PBN in the rat heart. Circulation Research 1987; 60: 375–383
  • Bradamante S., Monti E., Paracchini L., Lazzarini E., Piccinini F. Protective activity of the spin trap tert-butyl-a-phenyl nitrone (PBN) in reperfused rat heart. Journal of Molecular and Cellular Cardiology 1992; 24: 375–386
  • Halliwell B., Kaur H., Ingelman M.-Sundberg. Hydroxylation of salicylate as an assay for hydroxyl radicals: a cautionary note. Free Radical Biology and Medicine 1991; 10: 439–441
  • Woodbury D. M., Fingl E. Analgesics-antipyretics, anti-inflammatory agents, and drugs employed in the therapy of gout. The Pharmacological Basis of Therapeutics, L. S. Goodman, A. Gilman. MacMillan Publishing Co., Inc., New York 1975; 325–358
  • Grootveld M., Halliwell B. 2,3-Dihydroxybenzoic acid is a product of human aspirin metabolism. Biochemical Pharmacology 1988; 37: 271–280
  • Ingelman M.-Sundberg, Kaur H., Terelius Y., J-Persson O., Halliwell B. Hydroxylation of salicylate by microsomal fractions and cytochrome P-450. Lack of production of 2,3-dihydroxybenzoate unless hydroxyl radical formation is permitted. Biochemical Journal 1991; 276: 753–757
  • Feix J. B., Kalyanaraman B. Production of singlet oxygen-derived hydroxyl radical adducts during Merocyanine-540-mediated photosensitization: analysis by ESR-spin trapping and HPLC with electrochemical detection. Archives of Biochemisity and Biophysics 1991; 291: 43–51

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.