15
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Oxidative Modification of Low-Density Lipoprotein by the Human Hepatoma Cell Line HepG2

, , , , &
Pages 321-336 | Received 06 Nov 1995, Published online: 07 Jul 2009

References

  • Aden D. P., Fogel A., Plotkin S., Damjanov I., Knowles B. Controlled synthesis of HBsAg in a differenciated human liver carcinoma-derived cell line. Nature 1979; 282: 615–616
  • Knowles B. B., Howe C. C., Aden D. P. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science 1980; 209: 497–499
  • Javitt N. B. HepG2 cells as a resource for metabolic studies: lipoprotein, cholesterol, and bile acids. Federation American Society Experimental Biology journal 1990; 4: 161–168
  • Dixon J. L., Ginsberg H. N. Regulation of hepatic secretion of apolipoprotein B-containing lipoproteins: information obtained from cultured liver cells. journal of lipid research 1993; 34: 167–179
  • Hayashi K., Nakashima K., Saeki M., Kurushima H., Kurukawa J., Kuga Y., et al. Identification of a functional receptor differing from the LDL receptor that catabolizes chylomicron remnant in HepG2 cells. Atherosclerosis 1993; 104: 105–115
  • Henriksen T., Mahoney E. M., Steinberg D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins. Proceedings of the National Academy of Sciences USA 1981; 78: 6499–6503
  • Henriksen T., Mahoney E. M., Steinberg D. Enhanced macrophage degradation of biologically modified LDL. Arteriosclerosis 1983; 3: 149–159
  • Heinecke J. W., Rosen H., Chait A. Iron and copper promote modification of low density lipoprotein by human arterial smooth cells in culture. Journal of Clinical Investigation 1984; 74: 1890–1894
  • Lamb D. J., Wilkins G. M., Leake D. S. The oxidative modification of low density lipoprotein by human lymphocytes. Atherosclerosis 1992; 92: 187–192
  • Parthasarathy S., Printz D. J., Boyd D., Joy L., Steinberg D. Macrophage oxidation of low density lipoprotein generates a modified form recognized by the scavenger receptor. Arteriosclerosis 1986; 6: 505–510
  • Cathcart M. K., Morel D. W., Chisolm G. M. Monocytes and neutrophils oxidize low density lipoprotein making it cytotoxic. Journal of Leukocyte Biology 1985; 38: 341–350
  • Kokkonen J. O., Kovanen P. T. Stimulation of mast cells leads to cholesterol accumulation in macrophages in vitro by a mast cell granule-mediated uptake of low density lipoprotein. Proceedings of the National Academy of Sciences USA 1987; 84: 2287–2291
  • Aviram T. L., Daukner G., Brook J. G. Platlet secretory products increase low density lipoprotein oxidation, enhance its uptake by macrophages and reduce its fluidity. Arteriosclerosis 1990; 10: 559–563
  • Keane W. F., O'Doneell M. P., Kasiske B. L., Kim Y. Oxidative modification of low density lipoprotein by mesangial cells. Journal of the American Society of Nephrology 1993; 4: 187–194
  • Morgan J., Smith J. A., Wilkins G. M., Leake D. S. Oxidation of low density lipoprotein by bovine and porcine aortic endothelial cells in culture. Atherosclerosis 1993; 102: 209–216
  • Van Hinsbergh V. W. M., Scheffler M., Havekes L., Kempen H. J. M. Role of endothelial cells and their products in the modification of low density lipoproteins. Biochimica et Biophysica Acta 1986; 878: 49–64
  • Steinbrecher U. P. Role of superoxide in endothe-lial-cell modification of low density lipoproteins. Biochimica et Biophysica Acta 1988; 959: 20–30
  • Sparrow C. P., Olszewski J. Cellular oxidation of low density lipoprotein is caused by thiol production in media containing transition metal ions. Journal of Lipid Research 1993; 34: 1219–1228
  • Yagi K. A simple fluorometric assay for lipoper-oxide in blood plasma. Biochemical Medicine 1976; 15: 212–216
  • Vedie B., Myara I., Pech M. A., Maziere J. C., Maziere C., Caprani A., Moatti N. Fractionation of charge-modified low-density lipoprotein. journal of Lipid Research 1991; 32: 1359–1369
  • Bieri J. G., Tolliver T. J., Caliguari B. S. Simultaneous determination of vitamin E and retinol in plasma or red cells by high pressure-chromatography. American Journal of Nutrition 1979; 32: 2143–2149
  • Bilheimer D. N., Eisenberg S., Levy R. I. The metabolism of very low density lipoprotein proteins. I. Preliminary in vivo, in vitro observations. Biochimica et Biophysica Acta 1972; 260: 212–221
  • Goldstein J. L., Ho Y. K., Basu S. K., Brown M. S. Binding and degradation of low density lipoproteins by cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. Journal of Biological Chemistry 1974; 249: 5153–5162
  • McCord J. M., Fridovich I. Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry 1969; 244: 6049–6055
  • Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Analytical Biochemistry 1977; 83: 346–356
  • Steinbrecher U. P., Parthasarathy S., Leake D. S., Witztum J. L., Steinberg D. A. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein. Proceedings of the National Academy of Sciences USA 1984; 81: 3883–3887
  • Heinecke J. W., Baker L., Rosen H., Chait A. Superoxide-mediated modification of low density lipoprotein by arterial smooth cells. Journal of Clinical Investigation 1986; 77: 757–761
  • Cathcart M. K., Mc Nally A. K., Morel D. W., Chisolm G. M. Superoxide anion participation in human monocyte-mediated oxidation of low density lipoprotein and conversion of low density lipoprotein to a cytotoxin. Journal of Immunology 1989; 142: 1963–1969
  • Morel D. W., DiCorleto P. E., Chisolm G. M. Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation. Arteriosclerosis 1984; 4: 357–364
  • Esterbauer H., Dieber-Rotheneder M., Waeg G., Striegl G., Jiirgens G. Biochemical, structural and functional properties of oxidized low density lipoproteins. Chemical Research in Toxicology 1990; 3: 77–92
  • Esterbauer H., Gebicki J., Puhl H., Jiirgens G. The role of lipid peroxidation and antioxidants in oxidative modification of low density lipoprotein. Free Radical Biology and Medicine 1992; 13: 341–390
  • Hiramatsu K., Rosen H., Heinecke J. W., Wolfbauer G., Chait A. Superoxide initiates oxidation of low density lipoprotein by human monocytes. Arteriosclerosis 1987; 7: 55–60
  • Morel D. W., Hessler J. R., Chisolm G. M. Low density lipoprotein cytotoxicity induced by free radical peroxidation of lipid. Journal of Lipid Research 1983; 24: 1070–1076
  • Parthasarathy S., Wieland E., Steinberg D. A role for endothelial cell lipoxygenase in the oxidative modification of low density lipoprotein. Proceedings of the National Academy of Sciences USA 1989; 86: 1046–1050
  • Mc Nally A., Chisolm G. M., III, Morel D. W., Cathcart M. K. Activated human monocytes oxidize low density lipoprotein by a lipoxygenase-dependent pathway. Journal of Immunology 1990; 145: 254–259
  • Sparrow C. P., Olszewski J. Cellular oxidative modification of low density lipoprotein does not require lipoxygenases. Proceedings of the National Academy of Sciences USA 1992; 89: 128–131
  • Jessup W., Darley-Usmar V., O'Leary V., Bedwell S. 5-lipoxygenase is not essential in macrophage-mediated oxidation of low-density lipoprotein. Biochemical Journal 1991; 278: 163–169
  • Rankin S. M., Parthasarathy S., Steinberg D. Evidence for a dominant role of lipoxygenase(s) in the oxidation of LDL by mouse peritoneal macrophages. Journal of Lipid Research 1991; 32: 449–456
  • Parthasarathy S., Steinbrecher U. P., Barnett J., Witztum J. L., Steinberg D. A. Essential role of phospholipase A2 activity in endothelial cell-induced modification of low density lipoprotein. Proceedings of the National Academy of Sciences USA 1985; 82: 3000–3004
  • Cathcart M. K., Chisolm G. M., Mc Nally A. K., Morel D. W. Oxidative modification of low density lipoprotein by activated human monocytes and the cell lines U 937 and HL 60. In vitro cellular and developmental biology 1988; 24: 1001–1008
  • Pech M. A., Myara I., Moatti N., Caprani A. Influence of culture medium characteristics on the ability to oxidize low density lipoproteins. Bioelectrochemistry and Bioenergetics 1993; 29: 277–288
  • Aust S. D., Svingen B. A. The role of iron in enzymatic lipid peroxidation (1982) Free radicals in biology V. 1982; 1–28
  • Wilkins G. M., Leake D. S. Free radicals and low density lipoprotein oxidation by macrophages. Biochemical Society Transactions 1990; 18: 1170–1171
  • Jessup W., Simpson J. A., Dean R. T. Does superoxide radical have a role in macrophage-mediated oxidative modification of LDL. Atherosclerosis 1993; 99: 107–120
  • Bedwell S., Dean R. T., Jessup W. The action of defined oxygen-centered free radicals on LDL structure and metabolism. Biochemical Journal 1989; 262: 707–712
  • Heinecke J. W. Free radical modification of low density lipoprotein: mechanisms and biological consequences. Free Radicals Biology and Medicine 1987; 3: 65–73
  • Heinecke J. W., Rosen H., Suzuki L. A., Chait A. The role of sulfur-containing amino acids in superoxide production and modification of low density lipoprotein by arterial smooth muscle cells. Journal of Biological Chemistry 1987; 262: 10098–10103
  • Bannai S., Ishii T. Transport of cystine and cysteine and cell growth in cultured human diploid fibroblasts: effects of glutamate and homocysteate. Journal of Cell Physiology 1982; 112: 265–272
  • Lu S. C., Huang H. Comparison of sulfur amino acid utilization for GSH synthesis between HepG2 cells and cultured rat hepatocytes. Biochemical Pharmacology 1994; 47: 859–869
  • Adamson G. M., Billings R. E. The role of xanthine oxidase in oxidative damage caused by cytokines in cultured mouse hepatocytes. Life Sciences 1994; 55: 1701–1709
  • Parthasarathy S. Oxidation of low density lipoprotein by thiols compounds leads to its recognition by the acetyl-LDL receptor. Biochimica et Biophysica Acta 1987; 917: 337–340
  • Steinberg D., Parthasarathy S., Carew T. E., Khoo J. C., Witztum J. L. Beyond cholesterol: modifications of low density lipoprotein that increase its atherogenicity. New England Journal of Medicine 1989; 320: 915–924
  • Salonen J. T., Ylä-Herttuala S., Yamamoto R., Butler S., Korpela H., Salonen R., Nyyssönen K., Palinski W., Witztum J. L. Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet 1992; 339: 883–887
  • Maggi E., Marchesi E., Ravetta V., Falaschi F., Finardi G., Bellomo G. Low density lipoprotein oxidation in essential hypertension. Journal of Hypertension 1993; 11: 1103–1111
  • Armstrong V. W., Wieland E., Diedrich F., Renner A., Rath W., Kreuzer H., Kuhn W., Oellerich M. Serum antibodies to oxidized low density lipoprotein in preeclampsia and coronary heart disease. Lancet 1994; 343: 1570
  • Palinski W., Rosenfeld M. E., Yla-Herttuala S., Gurtner G. C., Socher S. S., Butler S. W., Parthasarathy S., Carew T. E., Steinberg D., Witztum J. L. Low density lipoprotein undergoes oxidative modification in vivo. Proceedings of the National Academy of Sciences USA 1989; 86: 1372–1376
  • Virella G., Virella I., Leman R. B., Pryor M. B., Lopes-Virella M. F. Anti-oxidized low density lipoprotein antibodies in patients with coronary heart disease and normal healthy volunteers. International Journal of Clinical and Laboratory Research 1993; 23: 95–101
  • Parums D. V., Brown D. L., Mitchinson M. J. Serum antibodies to oxidized low density lipoprotein and ceroid in chronic periaortitis. Archives of Pathology and Laboratory Medicine 1990; 114: 383–387
  • Aho K., Seuri M., Leikola J., Alfthan G., Vaarala O., Palosuo T. Serum antibodies to oxidized low density lipoprotein. Lancet 1994; 344: 199–200
  • Craig W. Y., Ledue T. B. Changes in serum antibodies to oxidised low density lipoprotein with age. Lancer 1994; 344: 411
  • Glickman R. M., Sabesin S. M. The liver: biology and pathology, 3rd edition. Raven Press, Ltd., New York 1994; 23: 391–414
  • Poli G., Albano E., Dianzani M. U. The role of lipid peroxidation in liver damage. Chemistry and Physics of Lipids 1987; 45: 117–142
  • Panasenko O. M., Sdvigova A. G., Sergienko V. I., Lopukhin Y. M. The rabbit liver in experimental atherosclerosis secretes oxidized lipoproteins. Bulletin of Experimental Biology and Medicine (English Translation) 1992; 113: 181–183
  • Panasenko O. M., Sergienko V. I. Free radical modification of blood lipoproteins and atherosclerosis. Biologicals Memories 1994; 7: 323–364
  • Wehr H., Bednarska-Makaruk M., Pozniak M., Rodo M. Antibodies against unmodified and modified low density lipoproteins in patients with coronary heart disease. (Abstract). Atherosclerosis 1994; 10: 221
  • Van Berkel T. J. C., De Rijke Y. B., Kruijt J. K. Different fate in vivo of oxidatively modified low density lipoprotein and acetylated low density lipoprotein in rats. Journal of Biological Chemistry 1991; 266: 2282–2289
  • Nagelkerke J. F., Barto K. P., Van Berkel T. J. C. In vivo, in vitro uptake and degradation of acetylated low density lipoprotein by rat liver endothelial, Kupffer, and parenchymal cells. Journal of Biological Chemistry 1983; 258: 12221–12227
  • Pieters M. N., Esbach S., Schouten D., Brouwer A., Knook D. L., Van Berkel T. J. C. Cholesteryl esters from oxidized low-density lipoproteins are in vivo rapidly hydrolyzed in rat Kupffer cells and transported to liver parenchymal cells and bile. Hepatology 1994; 19: 1459–1467
  • Stone W. L., Heimberg M., Scott R. L., LeClair I., Wilcox H. G. Altered hepatic catabolism of low-density lipoprotein subjected to lipid peroxidation in vitro. Biochemical Journal 1994; 297: 573–579
  • Nagelkerke J. F., Havekes L., Van Hinsbergh V. W. M., Van Berkel T. J. C. In vivo catabolism of biologically modified LDL. Arteriosclerosis 1984; 4: 256–264

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.