19
Views
14
CrossRef citations to date
0
Altmetric
Original Article

Oxidative Tissue Response Promoted by 5–Aminolevulinic Acid Promptly Induces the Increase of Plasma Antioxidant Capacity

, , , &
Pages 235-243 | Received 22 Jul 1996, Accepted 02 Sep 1996, Published online: 07 Jul 2009

References

  • Bechara E. J. H., Medeiros M. H. G., Monteiro H. P., Hermes-Lima M., Pereira B., Demasi M., Costa C. A., Abdalla D. S. P., Onuki J., Wendel C. M. A., Di Mascio P. A free radical hypotheses of lead poisining and inborn porphyrias associated with 5–aminolevulinic acid overload. Quimica Nova 1993; 16: 385–391
  • Monteiro H. P., Abdalla D. S. P., Faljoni-Alário A., Bechara E. J. H. Generation of active oxygen species during coupled autoxidation of oxyhemoglobin and δ-aminolevulinic acid. Biochimica et Biophysica Acta 1986; 881: 100–106
  • Monteiro H. P., Abdalla D. S. P., Augusto O., Bechara E. J. H. Free radical generation during δ-aminolevulinic acid autoxidation: induction by hemoglobin and connections with porphynnopathies. Archives of Biochemistry and Biophysics 1989; 271: 206–216
  • Minotti G. The role of an endogenous nonheme iron in microsomal redox reactions. Archives of Biochemistry and Biophysics 1992; 297: 189–198
  • Gorshein A., Weber R. δ-Aminolevulinic acid in plasma, cerebrospinal fluid, saliva and erythrocytes: studies in normal, uraemic and porphyric subjects. Clinical Sciences 1984; 72: 103–112
  • Minder E. I. Measurement of 5–aminolevulinic acid by reversed phase HPLC and fluorescence detection. Clinica Chimica Acta 1986; 161: 11–18
  • Hindmarsch J. T. The porphyrias: recent advances. Clinical Chemistry 1986; 32: 1255–1263
  • Hermes-Lima M., Valle V. G. R., Vercesi A. E., Bechara E. J. H. Damage to rat liver mitochondria promoted by 5–aminolevulinic acid-generated reactive oxygen species: connections with acute intermittent porphyria and lead-poisoning. Biochimica et Biophysica Acta 1991; 1056: 57–63
  • Hermes-Lima M., Castilho R. F., Valle V. G. R., Bechara E. J. H., Vercesi A. E. Calcium-dependent mitochondrial oxidative damage promoted by 5–aminolevulinic acid. Biochimica et Biophysica Acta 1992; 1180: 201–206
  • Onuki J., Medeiros M. H. G., Bechara E. J. H., Di Mascio P. 5–Aminolevulinic acid induces singlestrand breaks in plasmid pBR322 DNA in the presence of Fe2+ ions. Biochimica et Biophysica Acta 1994; 1225: 259–263
  • Oteiza P., Bechara E. J. H. 5–Aminolevulinic acid induces lipid peroxidation in cardiolipin-rich liposomes. Archives of Biochemistry and Biophysics 1993; 305: 282–287
  • Fraga C. G., Onuki J., Lucesoli F., Bechara E. J. H., Di Mascio P. 5–Aminolevulinic acid mediates the in vivo and in vitro formation of 8–hydroxy-2′-deoxyguanosine in DNA. Carcinogenesis 1994; 15: 2241–2244
  • Oteiza P. I., Kleinman G. C., Demasi M., Bechara E. J. H. 5–Aminolevulinic acid induces iron release from ferritin. Archives of Biochemistry and Biophysics 1995; 316: 607–611
  • Demasi M., Penatti C. A. A., DeLucia R., Bechara E. J. H. The prooxidant effect of 5–aminolevulinic acid in the brain tissue of rats: implications in neuropsychiatric manifestations in porphyrias. Free Radical Biology 6 Medicine 1996; 30: 291–299
  • Medeiros M. H. G., Marchiori P., Bechara E. J. H. Superoxide dismutase, glutathione peroxidase and catalase activities in the erythrocytes of patients with intermittent acute porphyria. Clinical Chemistry 1982; 28: 212
  • Lissi E., Pascual C., Del Castillo M. Luminol luminescence induced by 2,2′-azo-bis(2–amidinopropane) thermolysis. Free Radical Research Communications 1992; 17: 299–311
  • Koster J. F., Biemond P., Swaak A. J. G. Intracellular and extracellular sulfhydryl levels in rheumatoid arthritis. Annals of Rheumatoidis Diseases 1986; 45: 44–46
  • Boveris A., Cadenas E., Reiter R., Filipkowski M., Nakase Y., Chance B. Organ chemiluminescence: Noninvasive assay for oxidative radical reactions. Proceeding of the National Academy of Science USA 1980; 77: 347–351
  • Levine R. L., Garland D., Oliver C. N., Amici A., Climent I., Lenz A. G., Ah B. W., Shalfiel S., Stadtman E. R. Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology 1990; 186: 465–478
  • McGillion F. B., Thompson G. G., Goldberg A. Tissue uptake of δ-aminolevulinic acid. Biochemical Pharmacology 1975; 24: 299–301
  • Pereira B., Curi R., Kokubun E., Bechara E. J. H. 5–Aminolevulinic acid-induced alterations of oxidative metabolism in sedentary and exercise-trained rats. Journal of Applied Physiology 1992; 72: 226–230
  • Barnard M. L., Gurdian S., Diep D., Ladd M., Turrens J. F. Protein and amino acid oxidation is associated with increased chemiluminescence. Archives of Biochemistry and Biophysics 1993; 300: 651–656
  • Gutteridge J. M. C., Quinlan G. J. Antioxidant protection against organic and inorganic oxygen radicals by normal human plasma: the important primary role for iron-binding and iron-oxidising proteins. Biochimica et Biophysica Acta 1993; 1156: 144–150
  • Juknat A. A., Kotler M. L., del Carmen Battle A. M. High δ -aminolevulinic acid uptake in rat cerebral cortex: effect on porphyrin biosynthesis. Comparative Biochemistry and Physiology 1995; 111C: 143–150
  • Bechara E. J. H. A free radical hypothesis for porphyrias with 5–aminolevulinic acid overload. The Oxygen Poradox, K. J. Davis, F. Ursini. CLEUP University Press, Padova 1995; 503–-513
  • Härtel H., Walter G., Haseloff R. F., Hoffman P., Renger G. Photochemical and non-photochemical energy dissipation in response to 5–arninolevulinic acid-induced photosensitization of green leaves of wheat (Triticum aestivum L.) and lettuce (Lactuca sativa L.). J. Photochem. Photobiol. B: Biology 1996; 32: 115–126
  • Hiraku Y., Kawanishi S. Mechanism of oxidative DNA damage induced by δ-aminolevulinic acid in the presence of copper ion. Cancer Rescarch 1996; 56: 1786–1793
  • Onuki J., Medeiros M. H. G., Bechara E. J. H., Di Mascio P. 5–Aminolevulinic acid induces single-strand breaks in plasmid pBR322 DNA. Biochimica et Biophysica Acta 1994; 1225: 259–263
  • Fraga C., Onuki J., Lucesoli F., Bechara E. J. H., Di Mascio P. 5–Aminolevulinic acid mediates the in vivo and in vitro formation of 8–hydroxy-2′-deoxyguanosine in DNA. Carcinogenesis 1994; 15: 2241–2244

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.