91
Views
14
CrossRef citations to date
0
Altmetric
Original Article

Implications of Lag Time Concept in the Oxidation of LDL

, &
Pages 583-591 | Received 19 Dec 1997, Published online: 07 Jul 2009

References

  • Fuster V., Pearson T. A., Parthasarathy S. 27th Bethesda Conference: Efficacy of risk factor management. Journal of American College of Cardiology 1996; 27(5)957–1047
  • Brown M. S., Goldstein J. L. Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annual Review of Biochemistry 1983; 52: 223–261
  • Brown M. S., Basu S. K., Falck J. R., Ho Y. K., Goldstein J. L. The scavenger cell pathway for hpoprotein degradation: specifiaty of the binding site that mediates the uptake of negatively‐charged LDL by macro‐phages. Journal of Supramolecular Structure 1980; 13: 67–81
  • Kodama T., Reddy P., Kishimoto C., Krieger M. Purification and characterization of a bovine acetyl low density lipoprotein receptor. Proceedings of National Academy of Sciences, USA 1988; 85: 9238–9242
  • Stanton L. W., White R. T., Bryant C. M., Protter A. A., Endemann G. A macrophage Fc receptor for IgG is also a receptor for oxidized low density lipoprotein. Journal of Biological Chemistry 1992; 267: 22446–22451
  • Endemann G., Stanton L. W., Madden K. S., Bryant C. M., White R. T., Protter A. A. CD36 is a receptor for oxidized low density lipoprotein. Journal Biological Chemistry 1993; 268: 11811–11816
  • Ottnad E., Parthasarathy S., Sambrano G. S., Ramprasad M. P., Quehenberger O., Kondratenko N., Green S., Steinberg D. A macrophage receptor for oxidized low density lipoprotein distinct from the receptor for acetyl low density lipoprotein: partial purification and role in recognition of oxidatively damaged cells. Proceedings of National Academy of Sciences, USA 1995; 92: 1391–1395
  • Haberland M. E., Olch C. L., Fogelman A. M. Role of lysines in mediating interaction of modified low density lipoproteins with the scavenger receptor of human monocyte macrophages. Journal Biological Chemistry 1984; 259: 11305–11311
  • Parthasarathy S. Modified Lipoproteins in the Pathogenesis of Atherosclerosis. 1994; 1–125
  • Henriksen T., Mahoney E. M., Steinberg D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endo‐thelial cells: recognition by receptors for acetylated low density lipoproteins. Proceedings of National Academy of Sciences, USA 1981; 78: 6499–6503
  • Parthasarathy S., Steinbrecher U. P., Bamett J., Witztum J. L., Steinberg D. Essential role of phospho‐lipase A2 activity in endothelid cell‐induced modification of low density lipoprotein. Proceedings of National Academy of Sciences, USA 1985; 82: 3000–3004
  • Parthasarathy S., Young S. G., Witztum J. L., Pittman R. C., Steinberg D. Probucol inhibits oxidative modification of low density lipoprotein. Jouml of Clinical Investigations 1986; 77: 641–644
  • Heinecke J. W., Baker L., Rosen H., Chait A. Superoxide‐mediated modification of low density lipoprotein by arterial smooth muscle cells. Journal of Clinical Investigations 1986; 77: 757–761
  • Parthasarathy S., Fong L. G., Otero D., Steinberg D. Recognition of solubilized apoproteins from delipidated, oxidized low density lipoprotein (LDL) by the acetyl‐LDL receptor. Proceedings of National Academy of Sciences, USA 1987; 84: 537–540
  • Esterbauer H., Gebicki J., Puhl H., Jurgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radical & Biology Medicine 1992; 13: 341–390
  • Parthasarathy S. Oxidation of low‐density lipcprotein by thiol compounds leads to its recognition by the acetyl LDL receptor. Biochimica Biophysica Acta. 1987; 917: 337–340
  • Sparrow C. P., Olszewski J. Cellular oxidation of low density lipoprotein is caused by thiol production in media containing transition metal ions. Journal of Lipid Research 1993; 34: 1219–1228
  • Proodfoot J. M., Puddey I. B., Beilin L. J., Stocker R., Croft K. D. Unexpected dose response of copper concentration on lipoprotein oxidation in serum: discovery of a unique peroxidase‐like activity of urate/albumin in the presence of high copper concentrations. Free Radical & Biology Medicine 1997; 23: 699–705
  • Moore K., Darley‐Usmar V. M., Morrow J., Roberts L. J. Formation of F2 isoprostanes during the oxidation of human low density lipoprotein and plasma by peroxynitrite. Circulation Research 1995; 77: 335–341
  • Patel R. P., Diczfalusy U., Dzelectovic S., Wilson M. T., Darley‐Usmar V. M. Formation of oxysterols during oxidation of low density lipoprotein by peroxynitrite, myoglobin, and copper. Journal of Lipid Research 1996; 37: 2361–2371
  • Wieland E., Parthasarathy S., Steinberg D. Peroxidase‐dependent metal‐independent oxidation of low density lipoprotein in vitro: a model for in vivo oxidation?. Proceedings of National Academy of Sciences, USA 1993; 90: 5929–5933
  • Savenkova M. L., Mueller D. M., Heinecke J. W. Tyrosyl radical generated by myeloperoxidase is a physiological catalyst for the initiation of lipid peroxidation in low density lipoprotein. Journal of Biological Chemistry 1994; 269: 20394–20400
  • Bowry V. W., Ingold K. U., Stocker R. Vitamin E in human low‐density lipoprotein. When and how this antioxidant becomes a pro‐oxidant. Biochemical Journal 1992; 288: 341–344
  • Santanam N., Parthasarathy S. Paradoxical Actions of antioxidants in the oxidation of low density lipoprotein by peroxidases. Journal of Clinical Investigations 1995; 95: 2594–2600
  • O'Leary V., Graham A., Darley‐Usmar V. M., Stone D. The effect of lipid hydroperoxides on the copper dependent oxidation of low density lipoprotein. Biochemical Society Trans. 1993; 21: 89S
  • O'Leary V. J., Darley‐Usmar V. M., Russell L. J., Stone D. Prooxidant effects of lipoxygenase‐derived peroxides on the copper‐initiated oxidation of low‐density lipoprotein. Biochemical Journal 1992; 282: 631–634
  • Santanam N., Parthasarathy S. Cellular cysteine generation does not contribute to the initiation of LDL oxidation. Journal of Lipid Research 1995; 36: 2203–2211
  • Thomas C. E., Jackson R. L. Lipid hydro‐peroxide involvement in copper‐dependent and independent oxidahon of low density lipoproteins. Journal of Pharmacology & Experimental Therapeutics 1991; 256(3)1182–1188
  • Noguchi N., Gotoh N., Niki E. Effects of ebselen and probucol on oxidative modifications of lipid and protein of low density lipoprotein induced by free radicals. Biochirnica Biophysica Acta. 1994; 1213(2)176–182
  • Lass A., Witting P., Stocker R., Esterbauer H. Inhibition of copper‐ and peroxyl radical‐induced LDL lipid oxidation by ebselen: antioxidant actions in addition to hydroperoxide‐reducing activity. Biochimica Biophysica Acta. 1996; 1303(2)111–118
  • Ezaki M., Witztum J. L., Steinberg D. Lipoperoxides in LDL incubated with fibroblasts that overexpress 15‐lipoxygenase. Journal of Lipid Research 1995; 36: 1996–2004
  • Wetzstein C. J., Shern‐Brewer R. A., Santanam N., Green N. R., White‐Welkley J. E., Parthasarathy S. Does acute exercise affect the susceptibility of low density lipoprotein to oxidation?. Free Radical & Biology Medicine 1998; 24(4)679–682
  • Heinecke J. W., Kawamura M., Suzuki L., Chait A. Oxidation of low density lipoprotein by thiols: superoxide‐dependent and ‐independent mechanisms. Journal of Lipid Research 1993; 34: 2051–2061
  • Reaven P. D., Parthasarathy S., Grasse B. J., Miller E., Steinberg D., Witztum J. L. Effects of oleate‐rich and linoleate‐rich diets on the susceptibility of low density lipoprotein to oxidative modification in mildly hypercholesterolemic subjects. Journal of Clinical Investigations 1993; 91: 668–676
  • Reaven P. D., Parthasarathy S., Grasse B. J., Miller E., Almazan F., Mattson F., Khoo J. C., Steinberg D., Witztum J. L. Feasibility of using an oleate‐rich diet to reduce the susceptibility of low‐density lipoprotein to oxidative modification in humans. American Journal of Clinical Nutrition. 1991; 54: 701–706
  • Fruebis J., Parthasarathy S., Steinberg D. Evidence for a concerted reaction between lipid hydro‐peroxides and polypeptides. Proceedings of National Academy of Sciences, USA 1992; 89: 10588–10592
  • Daugherty A., Dunn J. L., Rateri D. L., Heinecke J. W. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. Journal of Clinical Investigations 1994; 94: 437–444
  • Hazen S. L., Heinecke J. W. 3‐Chlorotyrosine, a specific marker of myeloperoxidase‐catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. Journal of Clinical Investigations 1997; 99(9)2075–2081
  • Leeuwenbugh C., Rasmussen J. E., Hsu F. F., Mueller D. M., Pennathur S., Heinecke J. W. Mass spectrometric quantification of markers for protein oxidation by tyrosyl radical, copper, and hydroxyl radical in low density lipoprotein isolated from human atherosclerotic plaques. Journal of Biological Chemistry 1997; 272(6)3520–3526

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.