2,039
Views
33
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of the cytotoxic effect of camptothecin solid lipid nanoparticles on MCF7 cells

, , &
Pages 338-348 | Received 09 Apr 2013, Accepted 13 Jul 2013, Published online: 11 Sep 2013

References

  • Botella P, Abasolo I, Fernández Y, et al. (2011). Surface-modified silica nanoparticles for tumor-targeted delivery of camptothecin and its biological evaluation. J Control Rel 156:246–57
  • Burke TG, Mishra AK, Wani MC, Wall ME. (1993). Lipid bilayer partitioning and stability of camptothecin drugs. Biochemistry 32:5352–64
  • Cansell F, Aymonier C. (2009). Design of functional nanostructured materials using supercritical fluids. J Supercrit Fluids 47: 508–16
  • Çirpanli Y, Allard E, Passirani C, et al. (2011). Pharmaceutical nanotechnology antitumoral activity of camptothecin-loaded nanoparticles in 9L rat glioma model. Int J Pharmaceut 403:201–6
  • Coates J. (2000). Interpretation of infrared spectra, a practical approach. In: Meyers RA, ed. Encyclopedia of analytical chemistry. Chichester, UK: John Wiley & Sons Ltd, 10815–37
  • Cocero MJ, Martin A, Mattea F, Varona S. (2009). Encapsulation and co-precipitation processes with supercritical fluids: fundamentals and applications. J Supercrit Fluids 47:546–55
  • Giovanella BC. (1997). Topoisomerase I inhibitors. In: Teicher BA, ed. Cancer therapeutics: experimental & clinical agents. Totowa, NJ: Humana Press, 137–52
  • Gokce EH, Korkmaz E, Tuncay-Tanriverdi S, et al. (2012). A comparative evaluation of coenzyme Q10-loaded liposomes and solid lipid nanoparticles as dermal antioxidant carriers. Int J Nanomed 7:5109–17
  • Hatefi A, Amsden B. (2002). Camptothecin delivery system. Pharmac Res 19:1389–97
  • Jeha S, Kantarjian H, O'Brien S, et al. (1998). Activity of oral and intravenous 9-aminocamptothecin in SCID mice engrafted with human leukemia. Leuk Lymphoma 32:159–64
  • Jenning V, Thünemann AF, Gohla SH. (2000). Characterization of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int J Pharm 199:167–77
  • Joguparthi V, Xiang TX, Anderson BD. (2008). Liposome transport of hydrophobic drugs: gel phase lipid bilayer permeability and partitioning of the lactone form of a hydrophobic camptothecin, DB-67. J Pharm Sci 97:400–20
  • Kalani M, Yunus R. (2011). Application of a supercritical antisolvent method for drug encapsulation: a review. Intl J Nanomed 6:1429–42
  • Korsholm KS, Agger EM, Foged C, et al. (2007). The adjuvant mechanism of cationic dimethyldioctadecylammonium liposomes. Immunology 121:216–26
  • Kroll DJ, Rowe TC. (1991). Phosphorylation of DNA topoisomerase II in a human tumor cell line. J Biol Chem 266:7957–61
  • Kuo YC, Chung CY. (2011). Solid lipid nanoparticles comprising internal Compritol® 888 ATO, tripalmitin and cacao butter for encapsulating and releasing stavudine, delavirdine and saquinavir. Colloid Surf B: Biointer 88:682–90
  • Lansiaux A, Léonce S, Kraus-Berthier L, et al. (2007). Novel stable Camptothecin derivatives replacing the E-ring lactone by a ketone function are potent inhibitors of topoisomerase I and promising antitumor drugs. Mol Pharm 72:311–19
  • Lavergne O, Demarguay D, Kasprzyk PG, Bigg DC. (2000). Homocamptothecins: E-ring modified CPT analogues. Ann NY Acad Sci 922:100–11
  • Li FQ, Hu JH, Deng JX, et al. (2006). In vitro controlled release of sodium ferulate from Compritol® 888 ATO-based matrix tablets. Int J Pharm 324:152–7
  • Lin CH, Al-Suwayeh SA, Hung CF, et al. (2013). Camptothecin-loaded liposomes with α-melanocyte-stimulating hormone enhance cytotoxicity toward and cellular uptake by melanomas: an application of nanomedicine on natural product. J Tradit Comp Med 3:102–9
  • Lowry MB, Duchemin AM, Robinson JM, Anderson CL. (1998). Functional separation of pseudopod extension and particle internalization during Fc gamma receptor-mediated phagocytosis. J Exp Med 187:161–76
  • Lu AJ, Zheng ZS, Zou HJ, et al. (2007). 3D-QSAR study of 20 (S)-camptothecin analogs. Eur J Med Chem 42:307–14
  • Mi Z, Burke TG. (1994). Differential interactions of camptothecin lactone and carboxylate forms with human blood components. Biochemistry 33:10325–36
  • Min KH, Park K, Kim YS, et al. (2008). Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J Control Rel 127:208–18
  • Mo Y, Lim LY. (2005). Preparation and in vitro anticancer activity of wheat germ agglutinin (WGA)-conjugated PLGA nanoparticles loaded with paclitaxel and isopropyl myristate. J Control Rel 107:30–42
  • Morgan MT, Nakanishi Y, Kroll DJ, et al. (2006). Dendrimer-encapsulated camptothecins: increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer Res 66:11913–21
  • Obaidat AA, Obaidat RM. (2001). Controlled release of tramadol hydrochloride from matrices prepared using glyceryl behenate. Eur J Pharm Biopharm 52:231–5
  • Ozyazici, M, Gökçe EH, Ertan G. (2006). Release and diffusional modeling of metronidazole lipid matrices. Eur J Pharm Biopharm 63:331–9
  • Patel NM, Patel NV. (2008). Controlled release of dipyridamole from floating matrices prepared using glyceryl behenate. Drug Deliv Tech 8:54–9
  • Patel JK, Patel NV, Shah SH. (2009). In vitro controlled release of colon targeted mesalamine from Compritol® ATO 888 based matrix tablets using factorial design. Res Pharm Sci 4:63–75
  • Peikov V, Ugwu S, Parmar M, et al. (2005). pH-dependent association of SN-38 with lipid bilayers of a novel liposomal formulation. Int J Pharm 299:92–9
  • Perez MA, Ghaly ES, Marti A. (1993). Sustained release phenylpropanolamine hydrochloride from Compritol® 888 ATO matrix. Puerto Rico Health Sci J 12:263–7
  • Rao MRP, Ranpise AA, Thanki KC, et al. (2009). Effect of processing and sintering on controlled release wax matrix tablets of ketorolac tromethamine. Indian J Pharm Sci 71:538–44
  • Rejman J, Conese M, Hoekstra D. (2006). Gene transfer by means of lipo- and polyplexes: role of clathrin and caveolae-mediated endocytosis. J Liposome Res 16:237–47
  • Sato K. (1988). Crystallization of fats and fatty acids. In: Garti N, Sato K, eds. Crystallization and polymorphism of fats and fatty acids. Surfactant science series. New York: Marcel Dekker Inc, 267–303
  • Schmid B, Chung DE, Warnecke A, et al. (2007). Albumin-binding prodrugs of camptothecin and doxorubicin with an Ala-Leu-Ala-Leu-linker that are cleaved by cathepsin B: synthesis and antitumor efficacy. Bioconjug Chem 18:702–16
  • Singh I, Kumaravadivel N, Gnanam R, Vellalkumar S. (2010). RP-HPLC analysis for camptothecin content in Nothapodytes nimmoniana, an endangered medicinal plant. J Med Plants Res 4:255–9
  • Souto EB, Mehnert W, Müller RH. (2006). Polymorphic behaviour of Compritol® 888 ATO as bulk lipid and as SLN and NLC. J Microencapsul 23:417–33
  • Svenson S, Wolfgang M, Hwang J, et al. (2011). Preclinical to clinical development of the novel camptothecin nanopharmaceutical CRLX101. J Control Release 153:49–55
  • Stevenson JP, DeMaria D, Sludden J, et al. (1999). Phase I/pharmacokinetic study of the topoisomerase I inhibitor GG211 administered as a 21-day continuous infusion. Ann Oncol 10:339–44
  • Sun SF. (2004). Physical chemistry of macromolecules: basic principles and issues. 2nd ed. Hoboken, NJ: John Wiley & Sons, Inc
  • Tardi P, Choice E, Masin D, et al. (2000). Liposomal encapsulation of topotecan enhances anticancer efficacy in murine and human xenograft models. Cancer Res 60:3389–93
  • Tong R, Cheng J. (2010). Controlled synthesis of camptothecin-polylactide conjugates and nanoconjugate. Bioconjugate Chem 21:111–21
  • Uhumwangho MU, Okor RS. (2005). Current trends in the production and biomedical applications of liposomes: a review. J Biomed Sci 4:9–21
  • Ulukan H, Swaan PW. (2002). Camptothecins, a review of their chemotherapeutical potential. Drugs 62:2039–57
  • Venkata Naga Jyoty N, Muthu Prasana P, Suhas NS, et al. (2010). Microencapsulation techniques, factors influencing encapsulation efficiency. J Microencapsul 27:187–97
  • Wall ME, Wani MC. (1996). Camptothecin: discovery to clinic. Ann NY Acad Sci 803:1–12
  • Wall ME, Wani MC, Cook CE, et al. (1996). Plant antitumor agents. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminate. J Am Chem Soc 88:3888–90
  • Yang SC, Lu LF, Cai Y, et al. (1999). Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J Control Rel 59:299–307
  • Yasuji T, Takeuchi H, Kawashima Y. (2008). Particle design of poorly water-soluble drug substances using supercritical fluid technologies. Adv Drug Deliv Rev 60:388–98
  • Zhao X, Zu Y, Li Q, et al. (2010). Preparation and characterization of camptothecin powder micronized by a supercritical antisolvent (SAS) process. J Supercrit Fluids 51:412–19
  • Zhou W, Yuan X, Wilson A, et al. (2002). Efficient intracellular delivery of oligonucleotides formulated in folate receptor-targeted lipid vesicles. Bioconjugate Chem 13:1220–5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.