2,120
Views
14
CrossRef citations to date
0
Altmetric
Review Article

Low molecular weight heparins for current and future uses: approaches for micro- and nano-particulate delivery

, , , &
Pages 2661-2667 | Received 16 Mar 2015, Accepted 27 Apr 2015, Published online: 09 Jun 2015

References

  • Ahmed T, Ungo J, Zhou M, Campo C. (2000). Inhibition of allergic late airway responses by inhaled heparin-derived oligosaccharides. J Appl Physiol 88:1721–9
  • Arnold J, Ahsan F, Meezan E, Pillion DJ. (2002). Nasal administration of low molecular weight heparin. J Pharm Sci 91:1707–14
  • Bagre AP, Jain K, Jain NK. (2013). Alginate coated chitosan core shell NPs for oral delivery of enoxaparin: in vitro and in vivo assessment. Int J Pharm 456:31–40
  • Bai S, Ahsan F. (2009). Synthesis and evaluation of pegylated dendrimeric nanocarrier for pulmonary delivery of low molecular weight heparin. Pharm Res 26:539–48
  • Bai S, Ahsan F. (2010). Inhalable liposomes of low molecular weight heparin for the treatment of venous thromboembolism. J Pharm Sci 99:4554–64
  • Bai S, Gupta V, Ahsan F. (2009). Cationic liposomes as carriers for aerosolized formulations of an anionic drug: safety and efficacy study. Eur J Pharm Sci 38:165–71
  • Bai S, Thomas C, Ahsan F. (2007). Dendrimers as a carrier for pulmonary delivery of enoxaparin, a low-molecular weight heparin. J Pharm Sci 96:2090–106
  • Baldwin AD, Robinson KG, Militar JL, et al. (2014). In situ crosslinkable heparin-containing poly(ethylene glycol) hydrogels for sustained anticoagulant release. J Biomed Mater Res A 100:2106–18
  • Bisio A, Vecchietti D, Citterio L, et al. (2009). Structural features of low-molecular-weight heparins affecting their affinity to antithrombin. Thromb Haemost 102:865–73
  • Campo C, Molinari JF, Ungo J, Ahmed T. (1999). Molecular-weight-dependent effects of nonanticoagulant heparins on allergic airway responses. J Appl Physiol 86:549–57
  • Debourdeau P, Elalamy I, de Raignac A, et al. (2008). Long-term use of daily subcutaneous low molecular weight heparin in cancer patients with venous thromboembolism: why hesitate any longer? Support Care Cancer 16:1333–41
  • Eldor A. (2002). The use of low-molecular-weight heparin for the management of venous thromboembolism in pregnancy. Eur J ObstetGynecol Reprod Biol 104:3–13
  • Fan B, Xing Y, Zheng Y, et al. (2014). pH-responsive thiolated chitosan NPs for oral low-molecular weight heparin delivery: in vitro and in vivo evaluation. Drug Deliv 28:1–10
  • Firoz S, Sarasija S, Yajaman S. (2009). Long acting parenteral formulation of heparin. J Pharm Res 2:1547–49
  • Garcia DA, Baglin TP, Weitz JI, Samama MM. (2012). Parenteral Anticoagulants: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 141(2 Suppl):e24S–e43S
  • Grace JB. (2001). Thromboembolic disease. 2001. In: Shargel L, Mutnick AH, Souney PF, Swanson LN, eds. Comprehensive pharmacy review. 4th ed. Maryland, USA: Lippincott W&W, 754–67
  • Greer IA. (2005). Venous thromboembolism and anticoagulant therapy in pregnancy. Gender Med 2:S10–17
  • Hallan SS, Kaur P, Kaur V, et al. (2014). Lipid polymer hybrid as emerging tool in nanocarriers for oral drug delivery. Artif Cells Nanomed Biotechnol 19:1–16
  • Hirsh J, Anand SS, Halperin JL, Fuster V. (2001). Guide to anticoagulant therapy, Heparin: a statement for healthcare professionals from the American Heart Association. Circulation 103:2994–3018
  • Hirsh J, van Aken WG, Gallus AS, et al. (1976). Heparin kinetics in venous thrombosis and pulmonary embolism. Circulation 53:691–5
  • Hoffart V, Lamprecht A, Maincent P, et al. (2006). Oral bioavailability of a low molecular weight heparin using a polymeric delivery system. J Control Release 113:38–42
  • Hoffart V, Ubrich N, Lamprecht A, et al. (2003). Microencapsulation of low molecular weight heparin into polymeric particles designed with biodegradable and nonbiodegradable polycationic polymers. Drug Deliv 10:1–7
  • Hwang SR, Byun Y. (2014). Advances in oral macromolecular drug delivery. Expert Opin Drug Deliv 11:1955–67
  • Jiao YY, Ubrich N, Marchand-Arvier M, et al. (2001). Preparation and in vitro evaluation of heparin-loaded polymeric NPs. Drug Deliv 8:135–41
  • Kher A, Samama MM. (2005). Primary and secondary prophylaxis of venous thromboembolism with low-molecular-weight heparins: prolonged thromboprophylaxis, an alternative to vitamin K antagonists. J Thromb Haemost 3:473–81
  • Köse GT, Arica MY, Hasirci V. (1998). Low-molecular-weight heparin-conjugated liposomes with improved stability and hemocompatibility. Drug Deliv 5:257–64
  • Kreitz MR, Domm JA, Mathiowitz E. (1997). Controlled delivery of therapeutics from microporous membranes: II. In vitro degradation and release of heparin-loaded poly(D,L-lactide-co-glycolide). Biomaterials 18:1645–51
  • Lamprecht A, Ubrich N, Maincent P. (2007). Oral low molecular weight heparin delivery by MPs from complex coacervation. Eur J Pharm Biopharm 67:632–8
  • Lane DA. (1989). Heparin binding and neutralizing proteins. In: David A, Lindahl U, eds. Heparin: chemical and biological properties clinical applications lane. Boca Raton, FL: RC Press, 363–91
  • Lanke SS, Gayakwad SG, Strom JG, D'souza MJ. (2009). Oral delivery of low molecular weight heparin microspheres prepared using biodegradable polymer matrix system. J Microencapsul 26:493–500
  • Lever R, Clive P. (2002). Novel drug development opportunities for heparin. Nature Rev Drug Discov 1:140–8
  • Loira-Pastoriza C, Sapin-Minet A, Diab R, et al. (2012). Low molecular weight heparin gels, based on NPs, for topical delivery. Int J Pharm 426:256–62
  • Mahjub R, Shayesteh TH, Radmehr M, et al. (2014). Preparation and optimization of N-trimethyl-O-carboxymethyl chitosan NPs for delivery of low-molecular-weight heparin. Pharm Dev Technol 25:1–12
  • Meissner Y, Ubrich N, El Ghazouani F, et al. (2007). Low molecular weight heparin loaded pH-sensitive MPs. Int J Pharm 335:147–53
  • Molinari AC, Banov L, Bertamino M, et al. (2014). A practical approach to the use of low molecular weight heparins in VTE treatment and prophylaxis in children and newborns. Paediatr Hematol Oncol 32:1–10
  • Moon JW, Song YK, Jee JP, et al. (2006). Effect of subconjunctivally injected, liposome-bound, low-molecular-weight heparin on the absorption rate of subconjunctival hemorrhage in rabbits. Invest Ophthalmol Vis Sci 47:3968–74
  • Motlekar NA, Youan BB. (2006). The quest for non-invasive delivery of bioactive macromolecules: a focus on heparins. J Control Release 113:91–101
  • Motlekar NA, Youan BB. (2008). Optimization of experimental parameters for the production of LMWH-loaded polymeric microspheres. Drug Des Devel Ther 2:39–47
  • Mustafa F, Yang T, Khan MA, Ahsan F. (2004). Chain length-dependent effects of alkylmaltosides on nasal absorption of enoxaparin. J Pharm Sci 93:675–83
  • Nitta SK, Numata K. (2013). Biopolymer-based NPs for drug/gene delivery and tissue engineering. Int J Mol Sci 14:1629–54
  • Oliveira SS, Oliveira FS, Gaitani CM, Marchetti JM. (2011). MPs as a strategy for low-molecular-weight heparin delivery. J Pharm Sci 100:1783–92
  • Oyarzun-Ampuero FA, Brea J, Loza MI, et al. (2009). Chitosan-hyaluronic acid NPs loaded with heparin for the treatment of asthma. Int J Pharm 381:122–9
  • Paliwal R, Paliwal SR, Agrawal GP, Vyas SP. (2011). Biomimetic solid lipid NPs for oral bioavailability enhancement of low molecular weight heparin and its lipid conjugates: in vitro and in vivo evaluation. Mol Pharm 8:1314–21
  • Paliwal R, Paliwal SR, Agrawal GP, Vyas SP. (2012a). Recent advances in search of oral heparin therapeutics. Med Res Rev 32:388–409
  • Paliwal R, Paliwal SR, Agrawal GP, Vyas SP. (2012b). Chitosan nanoconstructs for improved oral delivery of low molecular weight heparin: in vitro and in vivo evaluation. Int J Pharm 422:179–84
  • Patel B, Gupta N, Ahsan F. (2014). Low-molecular-weight heparin (LMWH)-loaded large porous PEG-PLGA particles for the treatment of asthma. J Aerosol Med Pulm Drug Deliv 27:12–20
  • Patel RP, Narkowicz C, Jacobson GA. (2009). Investigation of the effect of heating on the chemistry and antifactor Xa activity of enoxaparin. J Pharm Sci 98:1700–11
  • Periyasamy N, Murugan S, Bharadhirajan P. (2013). Isolation and characterization of anticoagulant compound from marine mollusc Donax faba (Gmelin, 1791) from Thazhanguda, Southeast Coast of India. Afr J Biotechnol 12:5968–74
  • Pineo G, Hull R, Marder V. (2004). Oral delivery of heparin: SNAC and related formulations. Best Pract Res Clin Haematol 17:153–60
  • Qi Y, Zhao G, Liu D, et al. (2004). Delivery of therapeutic levels of heparin and low-molecular-weight heparin through a pulmonary route. Proc Natl Acad Sci USA 101:9867–72
  • Rawat A, Majumder QH, Ahsan F. (2008). Inhalable large porous microspheres of low molecular weight heparin: in vitro and in vivo evaluation. J Control Release 128:224–32
  • Reyes-Ortega F, Rodríguez G, Aguilar MR, et al. (2013). Encapsulation of low molecular weight heparin (bemiparin) into polymeric NPs obtained from cationic block copolymers: properties and cell activity. J Mater Chem B 1:850–60
  • Saravanan R, Shanmugam A. (2010). Isolation and characterization of low molecular weight glycosaminoglycans from marine mollusc Amussium pleuronectus (linne) using chromatography. Appl Biochem Biotechnol 160:791–9
  • Scala-Bertola J, Rabiskova M, Lecompte T, et al. (2009). Granules in the improvement of oral heparin bioavailability. Int J Pharm 374:12–16
  • Schulman S. (2003). Care of patients receiving long-term anticoagulant therapy. N Engl J Med 349:675–83
  • Song YK, Kim CK. (2006). Topical delivery of low-molecular-weight heparin with surface-charged flexible liposomes. Biomaterials 27:271–80
  • Sun W, Mao S, Mei D, Kissel T. (2008). Self-assembled polyelectrolyte nanocomplexes between chitosan derivatives and enoxaparin. Eur J Pharm Biopharm 69:417–25
  • Sun W, Mao S, Wang Y, et al. (2010). Bioadhesion and oral absorption of enoxaparin nanocomplexes. Int J Pharm 386:275–81
  • Viehof A, Lamprecht A. (2013). Oral delivery of low molecular weight heparin by polyaminomethacrylate coacervates. Pharm Res 30:1990–8
  • Walter RJ, Moores LK, Jimenez D. (2014). Pulmonary embolism: current and new treatment options. Curr Med Res Opin 30:1975–89
  • Wang L, Li L, Sun Y, et al. (2013). Exploration of hydrophobic modification degree of chitosan-based nanocomplexes on the oral delivery of enoxaparin. Eur J Pharm Sci 50:263–71
  • Weitz JI. (1997). Low-molecular-weight heparins. N Engl J Med 337:688–99
  • Yang T, Hussain A, Paulson J, et al. (2004). Cyclodextrins in nasal delivery of low-molecular-weight heparins: in vivo and in vitro studies. Pharm Res 21:1127–36
  • Yang T, Nyiawung D, Silber A, et al. (2012). Comparative studies on chitosan and polylactic-co-glycolic acid incorporated NPs of low molecular weight heparin. AAPS PharmSciTech 13:1309–18
  • Yoo JW, Doshi N, Mitragotri S. (2011). Adaptive micro and NPs: temporal control over carrier properties to facilitate drug delivery. Adv Drug Deliv Rev 63:1247–56
  • Young E, Prins M, Levine MN, Hirsh J. (1992). Heparin binding to plasma proteins, an important mechanism for heparin resistance. Thromb Haemost 67:639–43

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.